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Abstract

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flex-
ible and extensible interface between simulation codes and iterative analysis methods. DAKOTA con-



tains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification
with sampling, reliability, and stochastic finite element methods; parameter estimation with nonlinear least
squares methods; and sensitivity analysis with design of experiments and parameter study methods. These
capabilities may be used on their own or as components within advanced strategies such as surrogate-based
optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing
object-oriented design to implement abstractions of the key components required for iterative systems
analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design
and performance analysis of computational models on high performance computers.

This report serves as a user's manual for the DAKOTA software and provides capability overviews and
procedures for software execution, as well as a variety of example studies.

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(©) 1997-2002






Contents

Preface

1 Introduction
1.1 Motivation for DAKOTA Development . . . . . . . . . . . . . . ..
1.2 Capabilities of DAKOTA. . . . . .
1.3 How Does DAKOTAWOrK? . . . . . . . o o e e e
1.4 Background and Mathematical Formulations. . . . . . ... ... ... ... .....
1.5 UsingthisManual . . . . . . . .

2 Getting Started with DAKOTA
2.1 Installation Guide. . . . . . . ..
2.2 Rosenbrock and Textbook Test Problems. . . . . .. ... .. ... .. ........
2.3 DAKOTAInputFile Format . . . . . . . . . .
2.4 Example Problems. . . . . . . . e
25 WheretoGofromHere. . . . . . . . . . ..

3 DAKOTA Capabilities
31 OVEIVIEW . . . o o o e
3.2 Parameter Study Methods . . . . . . . . ...
3.3 Sampling Methods and Design of Experiments. . . . . . ... ... ... .......
3.4 Uncertainty Quantification. . . . . . . . . . ...
3.5 Optimization Software Packages. . . . . . . . . . . . . ... . . . ...
3.6 Additional Optimization Capabilities. . . . . . . . . . .. ... . ... .
3.7 Nonlinear Least Squares for Parameter Estimation . . . . . ... ... ........
3.8 Optimization Strategies . . . . . . . . . . . e
3.9 Surface Fitting Methods. . . . . . . . . . . .
3.10 Parallel Computing . . . . . . . . o e
311 SUMMAIY . . . o o o e e e

4 Variables

13
13
13
14
15
19

21
21
23
25
28
52

55
55
55
55
56
56
58
58
59
60
61
61

63



CONTENTS

4.1 OVEIVIEW . . . o e e e e e e e 63
4.2 DesignVariables. . . . . . . e 63
4.3 Uncertain Variables . . . . . . . . .. 64
4.4 State Variables. . . . . .. 65
45 Mixed Variables . . . . . .. 65
4.6 DAKOTA Parameters FileDataFormat . . . . . ... ... ... ... .. ....... 66
4.7 The Active SetVector . . . . . . . . . e 66
Interfaces 71
5.1 OVEIVIEW . . o o o e e e e e e e e e e e e e 71
5.2 The Direct Function Application Interface. . . . . . . . . ... ... ... ... ... 71
5.3 The System Call Application Interface. . . . . . . .. .. ... ... ... ....... 72
5.4 The Fork Application Interface . . . . . . . . . . .. ... 72
5.5 Forkor System Call: WhichtoUse?. . . . . . . .. .. ... ... ... . ....... 73
5.6 Interface Components. . . . . . . ... 73
5.7 FileManagement . . . . . . . .. 78
5.8 Parameterto Response Mappings. . . . . . . . o o o e 80
Response Data 83
6.1 OVEIVIEW . . . . o o e e 83
6.2 DAKOTA Results File DataFormat. . . . . . . . . . . .. .. .. . ... .. 84
6.3 Active Variables for Derivatives. . . . . . . . . ... 85
Output from DAKOTA 87
7.1 Overviewof QutputFormats . . . . . . . . . . . . . . . . . e 87
7.2 Standard Output. . . . . . . . . 87
7.3 TabularOutputData. . . . . . . . . . 93
7.4 GraphicsOUutput . . . . . . . . . e e e 93
7.5 ErrorMessages Output . . . . . . . . . . e e 94
Parameter Study Capabilities 97
8.1 OVEIVIEW . . . . e e e e e 97
8.2 \Vector Parameter Study. . . . . . . . .. 98
8.3 ListParameter Study. . . . . . . . . .. e 100
8.4 Centered Parameter Study . . . . . . . . . . . 100
8.5 Multidimensional Parameter Study. . . . . . . . . . ... . L Lo 101
Design of Experiments and Sampling Methods 105
9.1 OVEIVIEW . . . o ot e e e e e e e e 105

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



CONTENTS

10

11

12

13

14

9.2 Design of Computer Experiments . . . . . . . . . ... e 105
9.3 DDACE Background. . . . . . . . . . . e 107
9.4 FSUDace Background. . . . . . . . . . ... . 110
9.5 Sensitivity Analysis. . . . . .. L 110
Nondeterministic Analysis and Uncertainty Quantification 113
100 OVEIVIEW . . . o v v e e e e e e e e e e 113
10.2 Sampling Methods. . . . . . . . . 113
10.3 Analytical Reliability Methods. . . . . . . . . .. ... ... .. ... .. 119
10.4 Polynomial Chaos Methods. . . . . . .. .. .. . ... .. .. . ... ... 123
10.5 Future Nondeterministic Methods . . . . . . . . . . ... .. ... L 126
Optimization Capabilities 129
11.1 OVEIVIEW . . . o o o e e e e s e e e e 129
11.2 Optimization Software Packages. . . . . . . . . . . . . . .. 130
11.3 Additional Optimization Capabilities. . . . . . . . . . .. ... . ... ... .. .... 133
Nonlinear Least Squares for Parameter Estimation 141
12.1 OVEIVIEW . . . . o o e e e e 141
12.2 Solution Techniques. . . . . . . . . . . e e 142
12.3 Examples. . . . . 143
Advanced Optimization Strategies 145
13.1 OVEIVIEW . . . . o o e 145
13.2 Multilevel Hybrid Optimization . . . . . . . . . . . . .. . ... . ... . . ..., 145
13.3 Multistart Local Optimization. . . . . . . . . . . . . 146
13.4 Pareto Optimization . . . . . . . . . 146
13.5 Mixed Integer Nonlinear Programming (MINLP) . . . . . . . .. .. ... ... .... 150
13.6 Optimization Under Uncertainty (QUU) . . . . . . . . . . . .. . .. 151
13.7 Surrogate-Based Optimization (SBQ). . . . . . . . . . . . oo 156
Surface Fitting Methods 161
14.1 OVEIVIEW . . . L o o i e e e e e 161
14.2 Procedures for Surface Fitting . . . . . . . . . . ... L 161
14.3 Linear, Quadratic, and Cubic Polynomial Models . . . . . . . ... .. ... ... .. 162
14.4 First-order Taylor SeriesModels. . . . . . . . . . . .. . ... . .. 162
14.5 Kriging Spatial Interpolation Models. . . . . . . .. ... ... oo oL 163
14.6 Artificial Neural Network (ANN) Models. . . . . . . . .. .. ... ... .. ...... 164
14.7 Multivariate Adaptive Regression Spline (MARS) Models. . . . . . ... .. ... .. 164

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch© 1997-2002



CONTENTS

15

16

17

18

19

20

Parallel Computing 165
151 OVEIVIEW . . . . o o e e e 165
15.2 Parallel Algorithms. . . . . . . . o 167
15.3 Local Simulation Invocation Components. . . . . . . . . . . . .. e 168
15.4 Message Passing Components . . . . . . . . . .. 170
15.5 Putting the Components Together. . . . . . . . . . . . . ... ... . ... . ..., 172
15.6 Running a Parallel DAKOTAJob. . . . . . . . . . . 173
15.7 Specifying Parallelism. . . . . . . . ... 174
Advanced Simulation Code Interfaces 183
16.1 Building an Interface to a Engineering SimulationCode. . . . . . .. ... ... ... 183
16.2 Adding Simulations to the Direct Application Interface. . . . . . .. . ... ... ... 191
DAKOTA Usage Guidelines 193
17.1 Problem Exploration. . . . . . . . . . ... e 193
17.2 Optimization Method Selection. . . . . . . . . ... .. ... . o 193
17.3 UQ Method Selection . . . . . . . . . . . . . e 194
17.4 Parameter Study/DACE/Sampling Method Selection . . . . . . . ... .. ... ... 197
Restart Capabilities and Utilities 199
18.1 Restart Management . . . . . . . . . ... 199
18.2 The DAKOTA Restart Utility. . . . . . . . . . . .. o 200
Simulation Code Failure Capturing 205
19.1 Failuredetection. . . . . . . . 205
19.2 Failurecommunication . . . . . . . . .. 206
19.3 Failurerecovery . . . . . . . e 206
Additional Examples 209
20.1 Textbook Example. . . . . . . . . 209
20.2 Rosenbrock Example . . . . . . . . . . . e 211
20.3 CylinderHead Example. . . . . . . . . . . 215
20.4 ContainerExample . . . . . . . . e 217
20.5 Cantilever Example . . . . . . . 220
20.6 Multiobjective Examples. . . . . . . . . . . 222

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch© 1997-2002



Preface

Preface to DAKOTA Version 3.3 Users Manual

For version 3.3 of DAKOTA, we have added significant enhancements in the following areas:

major redesign of multilevel parallelism classes to allow multiple parallel configurations to coexist.
Previously, only a sequence of partitions could be used, one at a time. This allows more complete
parallelism management in strategies which have more than one active model at a time, such as
multifidelity SBO.

variance-based decomposition (VBD) sensitivity analysis method. VBD provides global sensitivity
indices for each uncertain variable.

capability for 2nd-order probability where one can specify an outer, epistemic level of uncertainty,
and inner, aleatory level of uncertainty. Sample realizations of uncertain variables at the outer level
are then inserted into the distribution parameters for an uncertainty analysis at the aleatory level.

addition of finite-difference numerical Hessians and BFGS/SR1 quasi-Newton Hessians to
DAKOTA's derivative estimation routines.

new Acro release. Acro is a global optimization library. Dakota now includes updated COLINY
methods supporting general nonlinear constraints: APPS, DIRECT, Solis-Wets, Pattern search, and
Cobyla.

new quasi-Monte Carlo sampling methods, accessible through the FSUDace library. The quasi-
Monte Carlo methods currently available are Hammersley and Halton sequences. Centroidal Voronoi
Tesselation (CVT) is also available. These methods are constructed to provide good uniformity
coverage of samples throughout the unit hypercube for design of computer experiments.

Preface to DAKOTA Version 3.2 Users Manual

For version 3.2 of DAKOTA, we have added significant enhancements in the following areas:

multiobjective optimization without weights via genetic algorithms,

a revised penalty function formulation for surrogate based optimization,

full- and quasi-Newton second order correction methods for surrogate based optimization,
a secant-based nonlinear least squares solution algorithm via NL2SOL,

a simplified interface to the OPT++ optimization methods, along with the addition of nonlinear
interior point methods to the OPT++ library of solvers,

nondeterministic sampling results output in cumulative or complementary cumulative formats, plus
output of simple correlations, partial correlations, and rank correlations,
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e nondeterministic reliability methods that allow user-specified probability levels or reliability levels,
and either a first- or second-order integration scheme, and

e the DPREPRO utility to automate the “cut-and-paste” steps of transferring the parameter values
output by DAKOTA into the input file for a user’s simulation code.

Future versions of DAKOTA will incorporate enhancements to the nondeterministic methods area, such as
guasi-Monte Carlo sampling and related approaches, a new interface to the COLINY package of evolution-
ary and non-gradient optimization algorithms, and a new graphical user interface to streamline the creation
of DAKOTA input files and the interpretation of DAKOTA output files.

Preface to DAKOTA Version 3.1 Users Manual

The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) project started in 1994

as an internal research and development activity at Sandia National Laboratories in Albuguerque, New
Mexico. The original goal of this effort was to provide a common set of optimization tools for a group

of engineers who were solving structural analysis and design problems. Prior to the start of the DAKOTA
project, there was not a focused effort to archive the optimization methods for reuse on other projects.
Thus, for each new project the engineers found themselves custom building new interfaces between the
engineering analysis software and the optimization software. This was a particular burden when attempts
were made to use parallel computing resources, where each project required the development of a unique
master program that coordinated concurrent simulations on a network of workstations or a parallel com-
puter. The initial DAKOTA toolkit provided the engineering and analysis community at Sandia Labs with
access to a variety of different optimization methods and algorithms, with much of the complexity of the
optimization software interfaces hidden from the user. Thus, the engineers were easily able to switch
between optimization software packages simply by changing a few lines in the DAKOTA input file. In
addition to applications in structural analysis, DAKOTA has been applied to applications in computational
fluid dynamics, nonlinear dynamics, shock physics, heat transfer, and many others.

DAKOTA has grown significantly beyond its original focus as a toolkit of optimization methods. In addi-
tion to having many state-of-the-art optimization methods, DAKOTA now includes methods for sensitivity
analysis, parameter estimation, design-of-experiments, uncertainty quantification, and multidimensional
surface mapping. Underlying all of these methods is support for parallel computation; ranging from the
level of a desktop multiprocessor computer up to massively parallel computers found at national laborato-
ries and supercomputer centers.

The objective of the public release of the DAKOTA software is to facilitate collaborations among the
developers of DAKOTA at Sandia National Laboratories and other institutions, including academic, gov-
ernmental, and corporate entities. We are interested in developing relationships with persons or groups
who would like to assist us in extending the capabilities of DAKOTA. We feel that this goal is best pursued
by making the source code of our software freely available to others. In doing so, we expect that some
of our errors will be found and corrected, and that new capabilities will be added to future versions of
DAKOTA. Currently, DAKOTA is licensed for public release under a GNU General Public License. See
http://www.gnu.org/licenses/gpl.htrfdar more information on the GPL software use agreement.

The core DAKOTA framework developers are Mike Eldred, Tony Giunta, Laura Swiler, David Gay, Steve
Wojtkiewicz, and Shane Brown. In addition, Bill Hart, Jean-Paul Watson, and Pam Williams develop and
maintain DAKOTAS interfaces to the COLINY, PICO, UTILIB, OPT++, DDACE, and APPS libraries and
John Eddy develops and maintains the JEGA library. Additional contributors to these libraries include
Patty Hough, Tammy Kolda, Monica Martinez-Canales, Cindy Phillips, and John Red-Horse from Sandia;
as well as Prof. Roger Ghanem from Johns Hopkins University; Prof. Jonathan Eckstein from Rutgers
University; and Prof. Virginia Torczon from the College of William and Mary.

Contact Information:

Michael Eldred, Principal Investigator - DAKOTA Project
Sandia National Laboratories
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P.O. Box 5800
Mail Stop 0370
Albuquergque, NM 87185-0370

email: <dakota@sandia.gov
web: http://endo.sandia.gov/DAKOTA
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Chapter 1

Introduction

1.1 Motivation for DAKOTA Development

Computational models are commonly used in engineering design activities for simulating complex physi-
cal systems in disciplines such as fluid mechanics, structural dynamics, heat transfer, nonlinear structural
mechanics, shock physics, and many others. These simulators can be an enormous aid to engineers who
want to develop an understanding and/or predictive capability for the complex behaviors that are often
observed in the respective physical systems. Often, these simulators are employed as virtual prototypes,
where a set of predefined system parameters, such as size or location dimensions and material properties,
are adjusted to improve or optimize the performance of a particular system, as defined by one or more
system performance objectives. Optimization of the virtual prototype then requires execution of the sim-
ulator, evaluation of the performance objective(s), and adjustment of the system parameters in an iterative
and directed way, such that an improved or optimal solution is obtained for the simulation as measured
by the performance objective(s). System performance objectives can be formulated, for example, to mini-
mize weight, cost, or defects; to limit a critical temperature, stress, or vibration response; or to maximize
performance, reliability, throughput, agility, or design robustness.

One of the primary motivations for the development of DAKOTA (Design Analysis Kit for Optimization

and Terascale Applications) has been to provide engineers with a systematic and rapid means of obtaining
improved or optimal designs using their simulator-based models. Making this capability available to en-
gineers generally leads to better designs and improved system performance at earlier stages of the design
phase, and eliminates some of the dependence on real prototypes and testing, thereby shortening the de-
sign cycle and reducing overall product development costs. In addition to providing this environment for
answering systems performance questions, the DAKOTA toolkit also provides an extensible platform for
the research and rapid prototyping of customized methods and stratégjies [

1.2 Capabilities of DAKOTA

The DAKOTA toolkit provides a flexible, extensible interface between your simulation code and a variety of
iterative methods and strategies. While DAKOTA was originally conceived as an easy-to-use interface be-
tween simulation codes and optimization algorithms, recent versions have been expanded to interface with
other types of iterative analysis methods such as uncertainty quantification with nondeterministic propaga-
tion methods, parameter estimation with nonlinear least squares solution methods, and sensitivity analysis
with general-purpose design of experiments and parameter study capabilities. These capabilities may be
used on their own or as building blocks within more sophisticated strategies such as hybrid optimization,
surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty.
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DAKOTA =
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Data Data *
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[nput File User’s Output File
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Code

Figure 1.1: The loosely-coupled or “black-box” interface between DAKOTA and a user-supplied simula-
tion code.

Thus, one of the primary advantages that DAKOTA has to offer is that access to a very broad range of
iterative capabilities can be obtained through a single, relatively simple interface between DAKOTA and
your simulator. Should you want to try a different type of iterative method or strategy with your simulator,

it is only necessary to change a few commands in the DAKOTA input and start a new analysis. The need to
learn a completely different style of command syntax and the need to construct a new interface each time
you want to use a new algorithm are eliminated.

1.3 How Does DAKOTA Work?

Figurel.1ldepicts the loosely-coupled, or “black-box,” relationship between DAKOTA and the simulation
code(s). This loose coupling is the simplest approach and is the one that most DAKOTA users will employ.
Data is exchanged between DAKOTA and the simulation code by reading and writing short data files,
and DAKOTA does not require access to the source code of the user’s simulation software. DAKOTA is
executed using commands that the user supplies in an input file (not shown in Eitjunénich specify

the type of analysis to be performed (e.g., parameter study, optimization, uncertainty estimation, etc.),
along with the file names associated with the user’s simulation code. During its operation, DAKOTA
automatically executes the user’s simulation code by creating a separate UNIX process that is external to
DAKOTA.

The solid lines in Figurel.1 denote file input/output (1/0O) operations that are part of DAKOTA or the
user’s simulation code. The dotted lines indicate the passing of information that must be handled by the
user. As DAKOTA is running, it writes out a parameters file that contains the values of the current variables.
DAKOTA then starts the user’s simulation code (or, often, a short driver script), and when the simulation
has completed, DAKOTA reads in the response data from a results file. This process is repeated until all of
the simulation code runs required by the iterative study have been completed.

In some cases it is advantageous to have a close coupling between DAKOTA and the user’s simulation
code. This close coupling is an advanced feature of DAKOTA and is accomplished through either a di-
rect interface or a SAND (simultaneous analysis and design) interface. For the direct interface, the user’s
simulation code is modified to behave as a function or subroutine under DAKOTA. This interface can be
considered to be “semi-intrusive” in that it requires relatively minor modifications to the simulation code.
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1.4 Background and Mathematical Formulations 15

Its major advantage is the elimination of the overhead resulting from file I/O and UNIX process creation.

It can also be a useful tool for parallel processing, by encapsulating everything within a single executable.
The SAND interface approach is “fully intrusive” in that it requires further modifications to the simulation
code so that DAKOTA has access to the internal vectors and matrices computed by the simulation code.
With the SAND approach, both the optimization method in DAKOTA and a nonlinear simulation code
are converged simultaneously. While this approach can greatly reduce the computational expense of op-
timization, considerable software development effort must be expended to achieve this intrusive coupling
between SAND optimization methods and the simulation code.

1.4 Background and Mathematical Formulations

This section provides a basic introduction to the mathematical formulation of optimization, nonlinear least
squares, sensitivity analysis, design of experiments, and uncertainty quantification problems. The pri-
mary goal of this section is to introduce terms relating to these topics, and is not intended to be a de-
scription of theory or numerical algorithms. There are numerous sources of information on these topics
([31, [34], [44], [41], [59], [6€]) and the interested reader is advised to consult one or more of these texts.

1.4.1 Optimization

A general optimization problem is formulated as follows:

minimize:  f(x)
x eR"
subjectto:  gr < g(x) < gu
h(x) = h, (1.1)
ap <Ax<ay
A.x = ay

X <x <Xy

where vector and matrix terms are marked in bold typeface. In this formulatien [z, 25, ..., z,] is

an n-dimensional vector of real-valuddsign variable®r design parametersThe n-dimensional vectors,

x;, andxy;, are the lower and upper bounds, respectively, on the design parameters. These bounds define
the allowable values for the elementsxgfand the set of all allowable values is termeddlesign spacer

the parameter spaceA design poinor asample poinis a set of values for that fall within the parameter
space.

The optimization goal is to minimize thebjective function f(x), while satisfying the constraints. Con-
straints can be categorized as either linear or nonlinear and as either inequality or equalitgniTinear
inequality constraintsg(x), are “2-sided,” in that they have both lower and upper boundsandg;,
respectively. Theonlinear equality constrainfsh(x), have target values specified hy. The linear in-

equality constraints create a linear systanx, whereA; is the coefficient matrix for the linear system.

These constraints are also 2-sided as they have and as lower and upper bounds, respectively. The linear
equality constraints create a linear systAnx, whereA., is the coefficient matrix for the linear system

and are the target values. The constraints partition the parameter space into feasible and infeasible regions.
A design point is said to b&asibleif and only if it satisfies all of the constraints. Correspondingly, a
design point is said to biafeasibleif it violates one or more of the constraints.

Many different methods exist to solve the optimization problem given by Equatihrall of which it-
erate onx in some manner. That is, an initial value for each parametex is chosen, theesponse
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quantities f(x), g(x), h(x), are computed, and some algorithm is applied to generate arbat will

either reduce the objective function, reduce the amount of infeasibility, or both. To facilitate a general
presentation of these methods, three criteria will be used in the following discussion to differentiate them:
optimization problem typesearch goaland search method

The optimization problem typean be characterized both by the types of constraints present in the problem
and by the linearity or nonlinearity of the objective and constraint functions. For constraint categorization, a
hierarchy of complexity exists for optimization algorithms, ranging from simple bound constraints, through
linear constraints, to full nonlinear constraints. By the nature of this increasing complexity, optimization
problem categorizations are inclusive of all constraint types up to a particular level of complexity. That
is, anunconstrained problerhas no constraints, leound-constrained probletmas only lower and upper
bounds on the design parameternaarly-constrained problerhas both linear and bound constraints, and

a nonlinearly-constrained problemmay contain the full range of nonlinear, linear, and bound constraints.

If all of the linear and nonlinear constraints are equality constraints, then this is referred tecsadity-
constrained problenand if all of the linear and nonlinear constraints are inequality constraints, then this is
referred to as aimequality-constrained problenfrurther categorizations can be made based on the linearity
of the objective and constraint functions. A problem where the objective function and all constraints
are linear is called dinear programming (LP) problem These types of problems commonly arise in
scheduling, logistics, and resource allocation applications. Likewise, a problem where at least some of the
objective and constraint functions are nonlinear is calladminear programming (NLP) problenThese

NLP problems predominate in engineering applications and are the primary focus of DAKOTA.

The search goalefers to the ultimate objective of the optimization algorithm, i.e., either global or local
optimization. Inglobal optimization the goal is to find the design point that gives the lowest feasible
objective function value over the entire parameter space. In contrdetahoptimization the goal is to

find a design point that is lowest relative to a “nearby” region of the parameter space. In almost all cases,
global optimization will be more computationally expensive than local optimization. Thus, the user must
choose an optimization algorithm with an appropriate search scope that best fits the problem goals and the
computational budget.

The search methoefers to the approach taken in the optimization algorithm to locate a new design point
that has a lower objective function or is more feasible than the current design point. The search method
can be classified as eithgradient-basedr nongradient-basedin a gradient-based algorithm, gradients

of the response functions are computed to find the direction of improvement. Gradient-based optimiza-
tion is the search method that underlies many efficient local optimization methods. However, a drawback
to this approach is that gradients can be computationally expensive, inaccurate, or even nonexistent. In
such situations, nongradient-based search methods may be useful. There are numerous approaches to
nongradient-based optimization. Some of the more well known of these include pattern search methods
(nongradient-based local techniques) and genetic algorithms (nongradient-based global techniques).

The overview of optimization methods presented above underscores that there is no single optimization
method or algorithm that works best for all types of optimization problems. Chéaftprovides some
guidelines on choosing which DAKOTA optimization algorithm is best matched to your specific optimiza-
tion problem.

1.4.2 Nonlinear Least Squares for Parameter Estimation

Specialized least squares solution algorithms can exploit the structure of a sum of the squares objective
function for problems of the form:

minimize:  f(x) = Y [Ti(x)]?

x e R"
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1.4 Background and Mathematical Formulations 17

subjectto:  g; < g(x) <gu
h(x) = h; 1.2)
ar <Ax<ay
Acx = ay

X <x <Xy

where f(x) is the objective function to be minimized afit}(x) is the " least squares term. The bound,

linear, and nonlinear constraints are the same as described previoudlyifoSpecialized least squares al-
gorithms are generally based on the Gauss-Newton approximation. When differentiatjrigiice, terms

of T;(x) T} (x) and[T}(x)]? result. By assuming that the former term tends toward zero near the solution
sinceT;(x) tends toward zero, then the Hessian matrix of second derivativégfcan be approximated

using only first derivatives df;(x). As a result, Gauss-Newton algorithms exhibit quadratic convergence
rates near the solution for those cases when the Hessian approximation is accurate, i.e. the residuals tend
towards zero at the solution. Thus, by exploiting the structure of the problem, the second order convergence
characteristics of a full Newton algorithm can be obtained using only first order information from the least
squares terms.

A common example foff;(x) might be the difference between experimental data and model predictions
for a response quantity at a particular location and/or time step, i.e.:

T;(x) = Ri(x) — R; (1.3)

where R;(x) is the response quantity predicted by the model &ads the corresponding experimental

data. In this casex would have the meaning of model parameters which are not precisely known and are
being calibrated to match available data. This class of problem is known by the terms parameter estimation,
system identification, model calibration, test/analysis reconciliation, etc.

1.4.3 Sensitivity Analysis and Parameter Studies

In many engineering design applications, sensitivity analysis techniques and parameter study methods are
useful in identifying which of the design parameters have the most influence on the response quantities.
This information is helpful prior to an optimization study as it can be used to remove design parameters
that do not strongly influence the responses. In addition, these techniques can provide assessments as
to the behavior of the response functions (smooth or nonsmooth, unimodal or multimodal) which can be
invaluable in algorithm selection for optimization, uncertainty quantification, and related methods. In a
post-optimization role, sensitivity information is useful is determining whether or not the response func-
tions are robust with respect to small changes in the optimum design point.

In some instances, the term sensitivity analysis is used in a local sense to denote the computation of re-
sponse derivatives at a point. These derivatives are then used in a simple analysis to make design decisions.
DAKOTA supports this type of study through numerical finite-differencing or retrieval of analytic gradi-
ents computed within the analysis code. The desired gradient data is specified in the responses section
of the DAKOTA input file and the collection of this data at a single point is accomplished through a pa-
rameter study method with no steps. This approach to sensitivity analysis should be distinguished from
the activity of augmenting analysis codes to internally compute derivatives using techniques such as direct
or adjoint differentiation, automatic differentiation (e.g., ADIFOR), or complex step modifications. These
sensitivity augmentation activities are completely separate from DAKOTA and are outside the scope of this
manual. However, once completed, DAKOTA can utilize these analytic gradients to perform optimization,
uncertainty quantification, and related studies more reliably and efficiently.

In other instances, the term sensitivity analysis is used in a more global sense to denote the investigation of
variability in the response functions. DAKOTA supports this type of study through computation of response
data sets (typically function values only, but all data sets are supported) at a series of points in the parameter
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space. The series of points is defined using either a vector, list, centered, or multidimensional parameter
study method. For example, a set of closely-spaced points in a vector parameter study could be used to
assess the smoothness of the response functions in order to select a finite difference step size, and a set of
more widely-spaced points in a centered or multidimensional parameter study could be used to determine
whether the response function variation is likely to be unimodal or multimodal. See CA&mtadditional
information on these methods. These more global approaches to sensitivity analysis can be used to obtain
trend data even in situations when gradients are unavailable or unreliable, and they are conceptually similar
to the design of experiments methods and sampling approaches to uncertainty quantification described in
the following sections.

1.4.4 Design of Experiments

Classical design of experiments (DoE) methods and the more modern design and analysis of computer ex-
periments (DACE) methods are both techniques which seek to extract as much trend data from a parameter
space as possible using a limited number of sample points. Classical DoE techniques arose from techni-
cal disciplines that assumed some randomness and nonrepeatability in field experiments (e.g., agricultural
yield, experimental chemistry). DoE approaches such as central composite design, Box-Behnken design,
and full and fractional factorial design generally put sample points at the extremes of the parameter space,
since these designs offer more reliable trend extraction in the presence of nonrepeatability. DACE methods
are distinguished from DoE methods in that the nonrepeatability component can be omitted since computer
simulations are involved. In these cases, space filling designs such as orthogonal array sampling and latin
hypercube sampling are more commonly employed in order to accurately extract trend information. Quasi-
Monte Carlo sampling techniques which are constructed to fill the unit hypercube with good uniformity of
coverage can also be used for DACE.

DAKOTA supports both DoE and DACE techniques. In common usage, only parameter bounds are used in
selecting the samples within the parameter space. Thus, DoE and DACE can be viewed as special cases of
the more general probabilistic sampling for uncertainty quantification (see following section), in which the
DoE/DACE parameters are treated as having uniform probability distributions. The DoE/DACE techniques
are commonly used for investigation of global response trends, identification of significant parameters (e.g.,
main effects), and as data generation methods for building response surface approximations.

1.4.5 Uncertainty Quantification

Uncertainty quantification (UQ) is related to sensitivity analysis in that the common goal is to gain an
understanding of how variations in the parameters affect the response functions of the engineering design
problem. However, for uncertainty quantification, some or all of the components of the parameter vector,
x, are considered to be uncertain and not precisely known. The uncertain parameter values are specified by
a probability distribution (e.g., normal/Gaussian) rather than a unique value.

The impact on the response functions due to the probabilistic nature of the parameters is often estimated
using a sampling-based approach such as Monte Carlo sampling or one of its variants (latin hypercube,
guasi-Monte Carlo, Markov-chain Monte Carlo, etc.). In these sampling approaches, a random number
generator is used to select different values of the parameters with probability specified by their probability
distributions. This is the point that distinguishes UQ sampling from DoE/DACE sampling, in that the for-
mer supports general probabilistic descriptions of the parameter set and the latter generally supports only
a bounded parameter space description (i.e., uniform probabilities). A particular set of parameter values is
often called asample pointor simply asample After a user-selected number of sample points has been
generated, the response functions for each sample are evaluated. Then, a statistical analysis is performed on
the response function values to yield information on their characteristics. While this approach is straight-
forward, and readily amenable to parallel computing, it can be computationally expensive depending on the
accuracy requirements of the statistical information (which links directly to the number of sample points).
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When sampling methods are too expensive to apply, various analytic and quasi-analytic reliability methods
can be applied to UQ problems. These include the Advanced Mean Value (AMV) and AMV+ algorithms,
along with the first-order reliability method (FORM) and the second-order reliability method (SCRM) [
These techniques all solve internal optimization problems in order to locate the most probable point (MPP)
of failure. The MPP is then used as the point about which approximate probabilities are integrated.

In addition, stochastic finite element (SFE) approaches using polynomial chaos expansions are also avail-
able for characterizing the response of systems whose governing equations involve stochastic coefficients.
The sampling, analytic reliability, and SFE approaches are described in more detail in Qlfapter

1.5 Using this Manual

The previous sections in this chapter have provided a brief overview of the capabilities in DAKOTA, and
have introduced some of the common terms that are used in the fields of optimization, parameter estimation,
sensitivity analysis, design of experiments, and uncertainty quantification. The DAKOTA user that is new
to these techniques is advised to consult the references cited earlier in this chapter to obtain more detailed
descriptions of methods and algorithms in these disciplines.

Chapter2 provides information on how to obtain, install, and use DAKOTA. In addition, example prob-
lems are presented in this chapter to demonstrate some of DAKOTA's capabilities for parameter studies,
optimization, and UQ. Chapté& provides a brief overview of all of the different software packages and
capabilities in DAKOTA. Chapte# through Chapte6 provide information on model components which
are involved in parameter to response mappings and Chaplescribes the output created by DAKOTA.
Chapte through Chaptet 2 provide details on the iterative algorithms supported in DAKOTA, and Chap-
ter 13 describes DAKOTAs advanced optimization strategies. Chapiadescribes the approximation
methods available in DAKOTA, Chapté&b covers DAKOTA's parallel computing capabilities, Chaptér
provides information on interfacing DAKOTA with engineering simulation codes, and Chappgovides
some usage guidelines for selecting DAKOTA algorithms. Finally, Chd@#grrough Chapte20describe
restart utilities, failure capturing facilities, and additional test problems, respectively.
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Chapter 2

Getting Started with DAKOTA

2.1 Installation Guide

DAKOTA can be compiled for most common computer systems that run the UNIX and LINUX operating
systems. The computers and operating systems actively supported by the DAKOTA project include:

e Sun Solaris 2.8

SGI IRIX 6.5

Compag/DEC OSF 5.1
e IBMAIX5.2
e Intel PC Redhat LINUX 9

e ASCI Red

In addition, partial support is provided for Cplant, PC Windows (via Cygwin), Mac OSX, and HP HPUX.
Additional details are provided in the filBakota/README in the distribution (see the following section
for download instructions).

2.1.1 How to Obtain DAKOTA - External to Sandia Labs

If you are outside of Sandia National Laboratories, the DAKOTA binary executable files and source code
files are available through the following web site:

http://endo.sandia.gov/DAKOTA

To receive the binary or source code files, you are asked to fill out a short online registration form. This
information will be used by the DAKOTA development team to collect software usage metrics and, if
desired, to register you for update announcements.

If you are a new DAKOTA user, we suggest that you download one of the binary executable distributions
rather than the source code distribution. The compilation process can be somewhat involved, and it will be
easier for you to first gain an understanding of DAKOTA by running the example problems that are provided
with one of DAKOTA's binary distributions. For more experienced users, DAKOTA can be customized with
additional packages and ported to additional computer platforms when building from the source code.


http://endo.sandia.gov/DAKOTA
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2.1.2 How to Obtain DAKOTA - Internal to Sandia Labs

DAKOTA binary executable files have been compiled and distributed to SCICO LAN and com-
mon compute servers at Sandia, Los Alamos, and Lawrence Livermore. Common locations in-
clude /usr/local/bin/dakota and /projects/dakota/bin/<system>/dakota , Where
“<system> "is osf ,irix ,tflop (ASCI Red service node), mougar (ASCI Red compute node).

Note that on some systems (e.g., ASCI Rédgt may precedéprojects due to NFS mounting of file
systems. To see if DAKOTA is available on your computer system and accessible in your UNIX environ-
ment path settings, type the commamkich dakota at the UNIX prompt. If the DAKOTA executable

file is in your path, its location will be echoed to the terminal. If the DAKOTA executable file is available
on your system but not in your path, then you will need to locate it and add its directory to your path (the
UNIX whereis andfind commands can be useful for locating the executable).

If DAKOTA is not available on your system, the current preferred options are to either get an account on
one of the common compute servers where DAKOTA is maintained, or if this is not practical, contact one
of the DAKOTA team members so that we can provide you with DAKOTA executable files that are as
complete as possible (i.e., that include Sandia-specific and site-licensed software that is not yet publicly
available). Alternatively, you can follow the instructions given in the previous section to obtain the public
version of the DAKOTA binary and/or source codes files. In the future, a download facility on Sandia’s
internal restricted network may be added to simplify internal distributions.

2.1.3 Installing DAKOTA - Binary Executable Files

Once you have downloaded a binary distribution from the web site listed above, you will have a UNIX tar
file that has a name similar @akota _3_x.OSversion.tar.gz

[Note to Windows Users: Some users have found that the name of the tar file gets corrupted when down-
loading the tar file to a PC running Windows. Before proceeding, verify that the name of the downloaded
tar file is the same as the name listed on the DAKOTA web site. If the file name has been corrupted, rename
it before attempting the steps listed below.]

Use the UNIX utilitygunzip to uncompress the tar file and the UNta¢ utility to extract the files from
the archive by executing the following commands:

gunzip Dakota_3_x.OSversion.tar.gz
tar -xvf Dakota_ 3 x.OSversion.tar

The tar utility will create a subdirectory naméidakota in which the DAKOTA executables and ex-

ample files will be stored. The executables ardDakota/bin , and the example problems are in
/Dakota/GettingStarted/Examples and in/Dakota/test

2.1.4 Installing DAKOTA - Source Code Files

The installation process for the DAKOTA source code files is more involved than the installation process for
the binary files. Detailed instructions for installing DAKOTA are given in the/filakota/INSTALL

2.1.5 Running DAKOTA

The DAKOTA executable file is named dakota. If this command is entered at the UNIX prompt without
any arguments, the following usage message is returned to the user:

usage: dakota [options and <args>]
-help (Print this summary)
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-version (Print DAKOTA version number)

-input <$val> (REQUIRED DAKOTA input file $val)

-output <$val> (Redirect DAKOTA standard output to file $val)
-error <$val> (Redirect DAKOTA standard error to file $val)
-read_restart <$val> (Read an existing DAKOTA restart file $val)
-stop_restart <$val> (Stop restart file processing at evaluation $val)
-write_restart <$val> (Write a new DAKOTA restart file $val)

Of these available command line inputs, only thieput " option is required; all others are optional. The
“-help " option prints the usage message above. Thwersion ” option prints the version number of

the executable. Theihput ” option provides the name of the DAKOTA input file. Theotitput " and

“-error " options provide file names for redirection of the DAKOTA standard output (stdout) and standard
error (stderr), respectively. Thertad _restart ” and “-write _restart " command line inputs
provide the names of restart databases to read from and write to, respectively:-sitipe “restart "
command line input limits the number of function evaluations read from the restart database (the default
is all the evaluations) for those cases in which some evaluations were erroneous or corrupted. Restart
management is an important technique for retaining data from expensive engineering applications. This is
an advanced topic that is discussed in detail in Chapfemote that these command line inputs can be
abbreviated so long as the abbreviation is unique (the current set of command line options do not have any
possibility for abbreviation ambiguity). That isH”, “-v 7, “ -i 0", "-e” "r " "-s” and “-w"” are
commonly used in place of the longer forms of the command line inputs.

" ow

To run DAKOTA with a particular input file, the following syntax can be used:
dakota -i dakota.in

This will echo the standard output (stdout) and standard error (stderr) messages to the terminal. To redirect
stdout and stderr to separate files, theand-e command line options may be used:

dakota -i dakota.in -0 dakota.out -e dakota.err

Alternatively, any of a variety of UNIX redirection variants can be used. The simplest of these redirects
stdout to another file:

dakota -i dakota.in > dakota.out

To append to a file rather than overwrite it;>" is used in place of #”. To redirect stderr as well as

stdout, a &” is appended with no embedded space, ix&™or “>>&” is used. To override the noclobber

environment variable (if set) in order to allow overwriting of an existing output file or appending of a file
that does not yet exist, 4 " is appended with no embedded space, i®.™ “>&! ", “>>1 " or “>>&!”
is used.

To run the dakota process in the background, append an ampersand symbol (&) to the command with an
embedded space, e.g.:

dakota -i dakota.in > dakota.out &

Refer to [L] for more information on UNIX redirection and background commands.

2.2 Rosenbrock and Textbook Test Problems

Many of the example problems in this chapter use the Rosenbrock fungtihmfhich has the form:

f(z1,22) = 100(z — 22)* + (1 — 21)? (2.1)

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(©) 1997-2002



24

Getting Started with DAKOTA

Figure 2.1: A 3-D plot of Rosenbrock’s function.

A three-dimensional plot of this function is shown in Figugl, where bothz; andzs range in value
from -2 to 2. Figure2.2 shows a contour plot for Rosenbrock’s function. An optimization problem using
Rosenbrock’s function is formulated as follows:

minimize: fxy,x2)
x € B2
subject to: —2<x; <2 (2.2)
—2<x9<2

Note that there are no linear or nonlinear constraints in this formulation, so this is a bound constrained
optimization problem. The unique solution to this problem lies at the gaintze) = (1, 1) where the
function value is zero.

The two-variable version of the “textbook” example problem provides a nonlinearly constrained optimiza-
tion test case. It is formulated as:

minimize
f= (@ — D'+ (22— 1) (2.3)

subject to
g=at-3 <0 (2.4)
g =a3-5 <0 (2.5)
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Figure 2.2: Contours of Rosenbrock’s function with variabjeon the bottom axis.

—05< 2 <58 (2.6)

—29< 2y <29 (2.7)

Contours of this example problem are illustrated in Figar8, with a close-up view of the feasible region
given in Figure2.4.

For the textbook example problem, the unconstrained minimum occirs at:) = (1,1). However, the
inclusion of the constraints moves the minimun{tg, x2) = (0.5, 0.5).

Several other example problems are available. See Chzpfer a description of these example problems
as well as further discussion of the Rosenbrock and textbook example problems.

2.3 DAKOTA Input File Format

All of the DAKOTA input files for the simple example problems presented here are included in the distribu-
tion tar files within the directoryDakota/GettingStarted/Examples . A simple DAKOTA input

file for a two-dimensional parameter study on Rosenbrock’s function is shown in Rdbi(@lename:
dakota _rosenbrock _2d.in ). This input file will be used to describe the basic format and syntax used
in all DAKOTA input files.

There are five specification blocks that may appear in DAKOTA input files. These are identified in the input
file using the following keywords: variables, interface, responses, method, and strategy. These keyword
blocks can appear in any order in a DAKOTA input file. At least eagiables interface responses

and methodspecification must appear, and no more than stnategyspecification should appear. In
Figure 2.5, one of each of the keyword blocks is used. Additional syntax features include the use of the
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Figure 2.3: Contours of the textbook optimization problem showing constrairftolid) andg, (dashed).
The feasible region lies at the intersection of the two constraints.

Figure 2.4: A close-up view of the feasible region for the textbook example problem. The constrained
optimum point is atxy, z2) = (0.5,0.5).
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strategy, \
single_method \
graphics \
tabular_graphics_data

method, \
multidim_parameter_study \
partitions = 8 8 \

model, \
single

variables, \
continuous_design = 2 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \

interface, \
direct \
analysis_driver = 'rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.5: The DAKOTA input file for the 2-D parameter study example problem.
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backslash symbol\} to escape the newline character in order to split a keyword onto multiple lines for
readability, use of the # symbol to indicate a comment, use of single quotes for string inputs (e.g., ‘x1’), the
use of commas and/or white space for separation of specifications, and the use of “=" symbols to optionally
enhance the association of supplied data. See the DAKOTA Reference Marjualr[additional details

on this input file syntax.

The variablessection of the input file specifies the characteristics of the parameters that will be used in
the problem formulation. The variables can be continuous or discrete, and can be classified as design
variables, uncertain variables, or state variables. See Chagdtermore information on the types of
variables supported by DAKOTA. Theariablessection shown in Figurg.5 specifies that there are two
continuous design variables. The sub-specifications for continuous design variables use the abbreviation
cdv in the input file and include the descriptors “x1” and “x2” as well as lower and upper bounds for these
variables. The information about the variables is organized in column format for readability. So, both
variablesr; andz, have a lower bound of -2.0 and an upper bound of 2.0.

Theinterfacesection of the input file specifies what approach will be used to map variables into responses
as well as details on how DAKOTA will pass data to and from a simulation code. In this example, a
test function internal to DAKOTA is used, but the data may also be obtained from a simulation code that is
external to DAKOTA. The keywordpplication indicates the use of an interface to an application code
(as opposed to ampproximation interface) and the keywordirect indicates the use of a function
linked directly into DAKOTA. Theanalysis _driver keyword indicates the name of the test function.
This is all that is needed since files will not be used to pass data between DAKOTA and the simulation
code.

Theresponsesection of the input file specifies the types of data that the interface will return to DAKOTA.
For the example shown in Figu&5, there is only one objective function, as indicated by the keyword
num.objective  _functions = 1 . Since there are no constraints associated with Rosenbrock’s func-
tion, the keywords associated with constraint specifications are omitted. The keyveogiadients
andno_hessians indicate that gradient and Hessian data are not needed.

The methodsection of the input file specifies the iterative technique that DAKOTA will employ, such

as a parameter study, optimization method, data sampling technique, etc. In Rdurihe keyword
multidim _parameter _study specifies a multidimensional parameter study, while the keyword par-
titions denotes the number of intervals per variable. In this case, there will be eight intervals (nine data
points) evaluated between the lower and upper bounds of both variables (bounds provided previously in the
variablessection), for a total of 81 response function evaluations.

The final section of the input file shown in Figi2eis thestrategysection. This keyword section is used to
specify some of DAKOTA's advanced meta-procedures such as multi-level optimization, surrogate-based
optimization, branch-and-bound optimization, and optimization under uncertainty. See Cl¥dptenore
information on these meta-procedures. $trategysection also contains the settings for DAKOTA's graph-

ical output (via thegraphics flag) and the tabular data output (via ttaular _graphics _data
keyword).

2.4 Example Problems

2.4.1 Two-Dimensional Parameter Study

The 2-D parameter study example problem listed in FigRu®is executed by DAKOTA using the follow-
ing command:

dakota -i dakota_rosenbrock_2d.in > 2d.out

The output of the DAKOTA run is directed to the file nam&d.out . For comparison, the file
2d.out.sav s included in the/Dakota/GettingStarted/Examples directory. As for many
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Figure 2.6: The dots indicate the location of the design points evaluated in the 2-D parameter study.

of the examples, DAKOTA provides a report on the best design point located during the study at the end of
these output files.

This 2-D parameter study produces the grid of data samples shown in BiguMote that thegraphics

flag in thestrategysection of the input file has been commented out since, for this example, the iteration
history plots created by DAKOTA are not particularly instructive. More interesting visualizations can
be created by importing DAKOTA's tabular data into an external graphics/plotting package. Common
graphics and plotting packages include Mathematica, Matlab, Microsoft Excel, Origin, Tecplot, and many
others (Sandia National Laboratories and the DAKOTA developers do not endorse any of these commercial
products).

2.4.2 \ector Parameter Study

In addition to the multidimensional parameter study, DAKOTA can perform a vector parameter study, i.e.,
a parameter study between any two design points imdimensional parameter space.

An input file for the vector parameter study is shown in Fig@r&. The primary differences between this
input file and the previous input file are found in tragiablesandmethodsections. In the variables section,

the keywords for the bounds are removed and replaced with the keyawrdhitial _point that spec-

ifies the starting point for the parameter study. In the method sectiongtiter _parameter _study

keyword is used. Thénal _point keyword indicates the stopping point for the parameter study, and
numsteps specifies the number of steps taken between the initial and final points in the parameter study.

The vector parameter study example problem is executed using the command

dakota -i dakota_rosenbrock_vector.in > vector.out

Figure2.8shows the graphics output created by DAKOTA. For this study, the simple DAKOTA graphics are
more useful for visualizing the results. Figu2é shows the locations of the 11 sample points generated
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strategy,
single_method
graphics
tabular_graphics_data
method,
vector_parameter_study
final_point = 1.1 1.3
num_steps = 10
model,
single
variables,
continuous_design = 2
cdv_initial_point -0.3 0.2
cdv_descriptors 'x1’ 'x2'
interface,
direct
analysis_driver = 'rosenbrock’
responses,

num_objective_functions = 1
no_gradients
no_hessians

Figure 2.7: The DAKOTA input file for the vector parameter study example problem.
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Figure 2.8: A screen capture of the DAKOTA graphics that are generated from the vector parameter study

in this study. It is evident from these figures that the parameter study starts within the banana-shaped
valley, marches up the side of the hill, and then returns to the valley. The outputdiler.out.sav
is provided in théDakota/GettingStarted/Examples directory.

In addition to the vector and multidimensional examples shown, DAKOTA also supports list and centered
parameter study methods. Refer to Chaptfar additional information.

2.4.3 Gradient-based Unconstrained Optimization

A DAKOTA input file for a gradient-based optimization of Rosenbrock’s function is listed in FigLir@

The format of the input file is similar to that used for the parameter studies, but there are some new key-
words in the responses and method sections. First, in the responses section of the input file, the keyword
block starting withnumerical _gradients  specifies that a finite difference method will be used to
compute gradients for the optimization algorithm. Note that the Rosenbrock function evaluation code
inside DAKOTA has the capability to give analytical gradient values. To switch from finite difference gra-
dient estimates to analytic gradients, uncommenatraytic  _gradients  keyword and comment out

the four lines associated with tiemerical _gradients  specification. Next, in the method section of

the input file, several new keywords have been added. In this section, the keyovorgn _frcg indi-

cates the use of the Fletcher-Reeves conjugate gradient algorithm in the CONMIN optimization software
package ¢5] for bound-constrained optimization. The keywarax iterations is used to indicate

the computational budget for this optimization (in this case, a single iteration includes multiple evalua-
tions of Rosenbrock’s function for the gradient computation steps and the line search steps). The keyword
convergence _tolerance is used to specify one of CONMIN's convergence criteria (here, CONMIN
terminates if the objective function value differs by less than the absolute value of the convergence tolerance
for three successive iterations). And, finally, theput verbosity is set tquiet

This DAKOTA input file is executed using the following command:
dakota -i dakota_rosenbrock_grad_opt.in > grad_opt.out

A sample output  file named grad _opt.out.sav is included in the
/Dakota/GettingStarted/Examples directory. When this example problem is executed,
DAKOTA creates some iteration history graphics similar to the screen capture shown in Fglte

These plots show how the objective function and design parameters change in value during the optimiza-
tion steps. The scaling of the horizontal and vertical axes can be changed by moving the scroll knobs on
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Figure 2.9: The dots indicate the location of the design points evaluated in the vector parameter study.

each plot. Also, the “Options” button allows the user to plot the vertical axes using a logarithmic scale.
Note that log-scaling is only allowed if the values on the vertical axis are strictly greater than zero.

Figure2.12shows the iteration history of the optimization algorithm. The optimization starts at the point
(z1,22) = (—1.2,1.0) as given in the DAKOTA input file. Subsequent iterations follow the banana-
shaped valley that curves around toward the minimum poifatates) = (1.0, 1.0). Note that the function
evaluations associated with the line search phase of each CONMIN iteration are not shown on the plot. At
the end of the DAKOTA run, information is written to the output file to provide data on the optimal design
point. This data includes the optimum design point parameter values, the optimum objective and constraint
function values (if any), plus the number of function evaluations that occurred and the amount of time that
elapsed during the optimization study.

2.4.4 Gradient-based Constrained Optimization

This example demonstrates the use of a gradient-based optimization algorithm on a nonlinearly constrained
problem. The “textbook” example problem (see Secfap) is used for this purpose and the DAKOTA

input file for this example problem is shown in Figu2el3 This input file is similar to the input file

for the unconstrained gradient-based optimization example problem involving the Rosenbrock function.
Note the addition of commands in the responses section of the input file that identify the number and
type of constraints, along with the upper bounds on these constraints. The comdiauds and
analysis _driver = ’text _book’ specify that DAKOTA will execute its internal version of the
textbook problem.

This example problem is executed by using the following command:
dakota -i dakota_textbook.in > textbook.out

For comparison purposes, the file textbook.out.sav is included in
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strategy, \
single_method \
graphics \
tabular_graphics_data
method, \
conmin_frcg \
max_iterations = 100 \
convergence_tolerance = le-4 \
model, \
single
variables, \
continuous_design = 2 \
cdv_initial_point  -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \
interface, \
direct \
analysis_driver = ’rosenbrock’ \
responses, \
num_objective_functions = 1 \
numerical_gradients \
method_source dakota \
interval_type forward \
fd_gradient_step_size = 1.e-5 \
no_hessians

Figure 2.10: The DAKOTA input file for the gradient-based optimization example problem.

Figure 2.11: A screen capture of the DAKOTA output graphics showing the iteration history for the
gradient-based optimization example.
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Figure 2.12: The sequence of design points evaluated during the gradient-based optimization of Rosen-
brock’s function (line search points omitted).

/Dakota/GettingStarted/Examples . The results of the optimization example problem are
listed at the end of théextbook.out file. This information shows that the optimizer stopped at the
point (z1,x2) = (0.5,0.5), where both constraints are satisfied, and where the objective function value is
0.125. This progress of the optimization algorithm is shown in Fig2u4where the dots correspond to
end point of each iteration in the algorithm. The starting poiftis z2) = (4.0, 0.0) where constraing;

is violated and constraing is satisfied. The optimizer takes a sequence of steps to minimize the objective
function while reducing the infeasibility @f, and retaining the feasibility af;. The optimization graphics

are also shown in Figur2 15

2.4.5 Nonlinear Least Squares Methods for Optimization

Both the Rosenbrock and textbook example problems can be formulated as least squares minimization
problems (see SectidtD.1land Sectior20.2). For example, the Rosenbrock problem can be cast as:

minimize  (f1)% + (f2)? (2.8)

wheref; = 10(xy — 2%) and fo = (1 — z1). When using a least squares approach to minimize a function,
each of the least squares terifis fo, . . . is driven to zero. This formulation permits the use of specialized
algorithms that can be more efficient than general purpose optimization algorithms. See Qhdpter

more detail on the algorithms used for least squares minimization, as well as a discussion on the types of
engineering design problems (e.g., parameter estimation) that can make use of the least squares approach.

Figure2.16is a listing of the DAKOTA input filedakota _rosenbrock _Is.in . This input file differs

from the input file shown in Figurd.10in several key areas. The responses section of the input file uses
the keywordnumleast _squares _terms = 2 instead of themumobjective  _functions = 1

The keywords in the interface section show that the UNIX system call method is used to run the C++ anal-
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strategy,
single_method

method,
dot_mmfd,
max_iterations = 50, \
convergence_tolerance = le-4

variables, \
continuous_design = 2 \
cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor 'x1’ 'x2'

interface, \
fork \
analysis_driver = ‘text_book’ \

responses,

num_objective_functions = 1 \

num_nonlinear_inequality_constraints = 2 \

numerical_gradients \
method_source dakota \
interval_type central \
fd_gradient_step_size = l.e-4 \

no_hessians

Figure 2.13: The DAKOTA input file for the nonlinearly constrained gradient-based optimization example

problem.
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Figure 2.14: Iteration history of the textbook example problem (iterations marked by solid dots).

ysis code namerbsenbrock _Is . The method section of the input file shows that the Gauss-Newton al-
gorithm from the OPT++ libraryq0] (optpp -g_newton ) is used in this example. For DAKOTA Version

3.1, the Gauss-Newton and NLSSOL SQP algorithms are available for exploiting the special mathematical
structure of least squares minimization problems.

The input file listed in Figur@.16is executed using the command:
dakota -i dakota_rosenbrock_ls.in > leastsquares.out

The file leastsquares.out.sav is included in the directory
/Dakota/GettingStarted/Examples . The optimization results at the end of this file show that

the least squares minimization approach has found the same optimum desigtzgoire) = (1.0, 1.0),

as was found using the conventional gradient-based optimization approach. The iteration history of the
least squares minimization is given in Figtd 7, and shows that 90 function evaluations were needed

for convergence. In this example the least squares approach required about the same number of function
evaluations as did conventional gradient-based optimization. However, in many cases the least squares
algorithm will converge more rapidly in the vicinity of the solution.

2.4.6 Nongradient-based Optimization via Pattern Search

In addition to gradient-based optimization algorithms, DAKOTA also contains a variety of nongradient-
based algorithms. One particular nongradient-based algorithm for local optimization is known as pattern
search (see Chapteffor a discussion of local versus global optimization). The DAKOTA input file shown

in Figure 2.18applies a pattern search method to minimize the Rosenbrock function. While this provides
for an interesting comparison to the previous example problems in this chapter, the Rosenbrock function
is not the best test case for a pattern search method. That is, pattern search methods are better suited to
problems where the gradients are too expensive to evaluate, inaccurate, or nonexistent; situations common
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Figure 2.15: The iteration history of the textbook example problem shows how the objective function was
reduced during the search for a feasible design point.
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strategy, \
single_method \
graphics \
tabular_graphics_data

method, \

optpp_g_newton \
max_iterations = 100 \
convergence_tolerance = le-4 \

model, \
single

variables, \
continuous_design = 2 \
cdv_initial_point ~ -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \

interface, \
direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

Figure 2.16: DAKOTA input file for minimizing the Rosenbrock function using a least squares formulation.
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Figure 2.17: The iteration history for least squares teyfinsind f> when minimizing the Rosenbrock
function.
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strategy, \
single_method \
graphics \
tabular_graphics_data

method, \

sgopt_pattern_search \
max_iterations = 1000 \
max_function_evaluations = 2000 \
solution_accuracy = le-4 \
initial_delta = 0.05 \
threshold_delta = 1e-8 \
exploratory_moves best_all \
contraction_factor = 0.75 \

model, \
single

variables, \
continuous_design = 2 \
cdv_initial_point 0.0 0.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \

interface, \
direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.18: A DAKOTA input file for a nongradient-based optimization example.

among many engineering optimization problems. It also should be noted that nongradient-based algorithms
generally are applicable only to unconstrained or bound-constrained optimization problems, although the
inclusion of general linear and nonlinear constraints in nongradient-based algorithms is an active area of
research in the optimization community. For most users who wish to use nongradient-based algorithms
on constrained optimization problems, the easiest route is to create a penalty function, i.e., a composite
function that contains the objective function and the constraints, external to DAKOTA and then optimize
on this penalty function. Most optimization textbooks will provide guidance on selecting and using penalty
functions.

This DAKOTA input file shown in Figur@.18is similar to the input file for the gradient-based optimization,
except it has a different set of keywords in the method section of the input file and the gradient specification
in the responses section has been changed igradients . The pattern search optimization algorithm
used is part of the COLINY library/?]. See the DAKOTA Reference Manual{] for more information

on themethodssection commands that can be used with COLINY algorithms.

This DAKOTA input file is executed using the following command:

dakota -i dakota_rosenbrock_ps_opt.in > ps_opt.out
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Figure 2.19: The sequence of design points evaluated during a nongradient-based pattern search optimiza-
tion of Rosenbrock’s function.

The file ps _opt.out.sav is included in the/Dakota/GettingStarted/Examples directory.

For this run, the optimizer was given an initial design point(of,z2) = (0.0,0.0) and was limited

to 2000 function evaluations. In this case, the pattern search algorithm stopped short of the optimum at
(z1,22) = (1.0, 1,0), although it was making progress in that direction when it was terminated (eventually,

it would have reached the minimum point).

The iteration history is provided in Figur@.19 which shows the locations of the function evaluations
used in the pattern search algorithm. Fig@@0 provides a close-up view of the pattern search function
evaluations used at the start of the algorithm. The simplex pattern is clearly visible at the start of the
iteration history, and the decreasing size of the simplex pattern is evident at the design points move toward
(.’El,l'z) = (10, 10)

While pattern search algorithms are useful in many optimization problems, this example shows some of
the drawbacks to this algorithm. While a pattern search method may make good initial progress towards
an optimum, it is often slow to converge. On a smooth, differentiable function such as Rosenbrock’s
function, a nongradient-based method will not be as efficient as a gradient-based method. However, there
are many engineering design applications where gradient information is inaccurate or unavailable, which
renders gradient-based optimizers ineffective. Thus, pattern search algorithms (and other nongradient-
based algorithms such as genetic algorithms and simulated annealing) are often good choices in complex
engineering applications when the quality of gradient data is suspect.

2.4.7 Nongradient-based Optimization via Genetic Algorithm

In contrast to pattern search algorithms, which are local optimization methods, genetic algorithms (GA)
are global optimization methods. As was described above for the pattern search algorithm, the Rosenbrock
function is not an ideal test problem for showcasing the capabilities of genetic algorithms. Rather, GAs
are best suited to optimization problems that have multiple local optima, and where gradients are either too
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Figure 2.20: A close-up view shows the shape of the simplex pattern used at the start of the pattern search
algorithm.

expensive to compute or do not exist.

Genetic algorithms, also known as Evolutionary Algorithms (EAS), are based on Darwin’s theory of sur-
vival of the fittest. The GA algorithm starts with a randomly selected population of design points in the
parameter space, where the values of the design parameters form a “genetic string,” which is analogous to
DNA in a biological system, that uniquely represents each design point in the population. The GA then
follows a sequence of generations, where the best design points in the population (i.e., those having low
objective function values) are considered to be the most “fit” and are allowed to survive and reproduce. The
GA simulates the evolutionary process by employing the mathematical analogs of processes such as natural
selection, breeding, and mutation. Ultimately, the GA identifies a design point, or a family of design points,
that minimize the objective function of the optimization problem. An extensive discussion of GAs is be-
yond the scope of this text, but may be found in a variety of sources (&} pp. 149-158; $7]). Detailed
information on the GA algorithms available in DAKOTA is given in the DAKOTA Reference Manudl [

The COLINY library, which provides the GA software that has been linked into DAKOTA, is described in
Reference4{?2].

Figure2.21shows a DAKOTA input file that uses a genetic algorithm to minimize the Rosenbrock function.
For this example the GA has a population size of 50. At the start of the first generation, a random number
generator is used to select 50 design points that will comprise the initial populpispecific seed value is

used in this example to generate repeatable results, although, in general, one should use the default setting
which allows the GA to choose a random seed.Jtwo-point crossover technique is used to exchange
genetic string values between the members of the population during the GA breeding process. The result
of the breeding process is a population comprised of the 10 best “parent” design points (elitist strategy) plus
40 new “child” design points. The GA optimization process will be terminated after either 6,000 iterations
(generations of the GA) or 10,000 function evaluations. The GA software available in DAKOTA provides
the user with much flexibility in choosing the settings used in the optimization processl $ead [42]

for details on these settings.
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strategy, \
single_method \
graphics \
tabular_graphics_data

method, \
sgopt_pga_real \

max_iterations = 6000 \
max_function_evaluations = 10000 \
seed = 11011011 \
population_size = 50 \
replacement_type elitist = 10 \
crossover_type two_point \

model, \
single

variables, \
continuous_design = 2 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors X1’ X2’ \

interface, \
direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_objective_functions = 1 \
no_gradients \
no_hessians

Figure 2.21: A DAKOTA input file that specifies the use of a genetic algorithm for optimizing Rosenbrock’s
function.
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Figure 2.22: The 50 design points in the initial population selected by the genetic algorithm.

The input file is executed by DAKOTA using the following command:
dakota -i dakota_rosenbrock_ga opt.in >! ga_opt.out

where the filega_opt.out.sav has been included ifDakota/GettingStarted/Examples

The GA optimization results printed at the end of this file show that the best design point found was
(z1,22) = (0.96,0.93). The file ga_tabular.dat.sav provides a listing of the design parameter
values and objective function values for all 10,000 design points evaluated during the running of the GA.
Figure 2.22shows the population of 50 randomly selected design points that comprise the first generation
of the GA, and Figur@.23shows the final population of 50 design points, where most of the 50 points are
clustered neafz, x2) = (0.96,0.93).

As described above, a GA is not well-suited to an optimization problem involving a smooth, differentiable
objective such as the Rosenbrock function. Rather, GAs are better suited to optimization problems where
conventional gradient-based optimization fails, such as situations where there are multiple local optima
and/or gradients cannot be computed. In such cases, the computational expense of a GA is warranted since
other optimization methods are not applicable or impractical. In many optimization problems, GAs often
quickly identify promising regions of the design space where the global minimum may be located. How-
ever, a GA can be slow to converge to the optimum. For this reason, it can be an effective approach to
combine the global search capabilities of a GA with the efficient local search of a gradient-based algorithm
in amultilevel hybrid optimizatiostrategy. In this approach, the optimization starts by using a few itera-
tions of a GA to provide the initial search for a good region of the parameter space (low objective function
and/or feasible constraints), and then it switches to a gradient-based algorithm (using the best design point
found by the GA as its starting point) to perform an efficient local search for an optimum design point.
More information on this multilevel hybrid approach is provided in Chapger

In addition to the genetic algorithm capabilities in tbaliny _ea method, there is a single-objective
genetic algorithm method callesbga . The major differences are thetga allows a warm start (e.g. you
can read in starting solutions from a file), and it allows one to specify a mix of continuous and discrete
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Figure 2.23: The 50 design points in the final population selected by the genetic algorithm. Most of the
points are clustered neét;, z2) = (0.96,0.93).

design variables. For more information on soga, see Chafter

2.4.8 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize
simultaneously. Often these are conflicting objectives, such as cost and performance. The answer to a
multi-objective problem is usually not a single point. Rather, it is a set of points called the Pareto front.
Each point on the Pareto front satisfies the Pareto optimality criterion, which is stated as follows: a feasible
vector X * is Pareto optimal if there exists no other feasible vedfaxhich would improve some objective
without causing a simultaneous worsening in at least one other objective. Thus, if a feasiblg’poirsts

that CAN be improved on one or more objectives without worsening of another, it is not Pareto optimal: it

is said to be “dominated” and the points along the Pareto front are said to be “non-dominated”.

Often multi-objective problems are addressed by simply assigning weights to the individual objectives,
summing the weighted objectives, and turning the problem into a single-objective one which can be solved
with a variety of optimization techniques. While this approach provides a useful “first cut” analysis (and
is supported within DAKOTA, see Sectidi.3, this approach has many limitations. The major limitation

is that a linear weighted sum objective will not find optimal solutions if the true Pareto front is nonconvex.
Also, if one wants to understand the effects of changing weights, this method can be computationally
expensive. Since each optimization of a single weighted objective will find only one point near or on
the Pareto front, many optimizations must be performed to get a good parametric understanding of the
influence of the weights and to achieve a good sampling of the entire Pareto frontier.

With version 3.2 of DAKOTA, we have added a capability to perform multi-objective optimization based
on a genetic algorithm method. This method is caltemfja. It is based on the idea that as the population
evolves in a GA, solutions which are non-dominated are chosen to remain in the population. Until version
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4.0 of DAKOTA, there was a selectidiype choice of dominatiacount which performed a custom fitness
assessment and selection operation together. As of version 4.0 of DAKOTA, that functionality has been
broken into separate, more generally usable fithess assessment and selection operators called the domina-
tion count fitness assessor and below limit selector respectively. The effect of using these two operators is
the same as the previous behavior of the dominatimmt selector. This means of selection works espe-
cially well on multi-objective problems because it has been specifically designed to avoid problems with
aggregating and scaling objective function values and transforming them into a single objective. Instead,
the fithess assessor works by ranking population members such that their resulting fitness is a function of
the number of other designs that dominate them. The héfoitselector then chooses designs by consid-

ering the fitness of each. If the fitness of a design is above a certain limit, which in this case corresponds to
a design being dominated by more than a specified number of other designs, then it is discarded. Otherwise
it is kept and selected to go to the next generation. The one catch is that this selector will require that
a minimum number of selections take plactrinkage _percentage defines the minimum amount

of selections that will take place if enough designs are available. It is interpreted as a percentage of the
population size that must go on to the subsequent generation. To enforce this, thdiléi@slector

makes all the selections it would make anyway and if that is not enough, it relaxes its limit and makes
selections from the remaining designs. It continues to do this until it has made enough selections. The
moga method has many other important features. Complete descriptions can be found in the DAKOTA
Reference Manuall[/].

Figure 2.24 shows an example input filelakota _mogatestl.in , which demonstrates some of the
multi-objective capabilities available with the moga method. This example has three input variables and
two objectives or response functions. Note that this method is referring to a different problem than the
Rosenbrock function because we wanted to demonstrate the capability on a problem with two conflict-
ing objectives. This example is taken from a testbed of multi-objective probléajs [The final re-

sults from moga are output to a file callédaldata.dat in the directory in which you are run-

ning. Thisfinaldata.dat file is simply a list of inputs and outputs. Plotting the output columns
against each other allows one to see the Pareto front generateddsy Figure2.25shows an example

of the Pareto front based on the results of executing the file with the following comrmdakdta -i

dakota _mogatestl.in . Note that a Pareto front easily shows the tradeoffs between Pareto optimal
solutions. For example, look at the point with f1 and f2 values equal to (0.9, 0.25). One cannot improve
(minimize) the value of objective function f1 without increasing the value of f2: another point on the Pareto
front, (0.6, 0.6) represents a better value of objective f1 but a worse value of objective f2.

Sectionsl1.2and11.3provide more information on multiobjective optimization. There are three detailed
examples provided in Secti®0.6

2.4.9 Monte Carlo Sampling

Figure2.26 shows the DAKOTA input file for an example problem which demonstrates some of the ran-
dom sampling capabilities available in DAKOTA. In this example, the design parameters, x1 and x2, will
be treated as uncertain parameters that have uniform distributions over the interval [-2, 2]. This is specified
in the variables section of the input file, beginning with the keywandorm _uncertain . For com-

parison, the keywords from the previous examples are retained, but have been commented out. Another
change in the input file occurs in the responses section where the kegumortesponse  _functions

is used in place afium.objective  _functions . The final changes to the input file occur in the method
section, where the keywortbnd _sampling (nond is an abbreviation for nondeterministic) is used. The
other keywords in the methods section of the input file specify the number of samples (200), the seed for
the random number generator (17), the sampling method (random), and the response threshold (100.0).
Theseed specification allows a user to obtain repeatable results from multiple runs. If a seed value is not
specified, then DAKOTA's sampling methods are designed to generate nonrepeatable behavior (by initial-
izing the seed using a system clock). The keywasponse _thresholds  allows the user to specify
threshold values for which DAKOTA will compute statistics on the response function output. Note that a
unique threshold value can be specified for each response function.
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strategy, \
single_method \

method, \
moga
output silent \
seed = 10983 \
max_function_evaluations = 2500 \
initialization_type \
unique_random \
crossover_type \
multi_point_parameterized_binary = 3 \
crossover_rate = 0.8 \
mutation_type \
replace_uniform \
mutation_rate = 0.1 \
fitness_type \
domination_count \
replacement_type \
below_limit = 6 \
shrinkage_percentage = 0.9 \
convergence_type \
metric_tracker \
percent_change = 0.05 \
num_generations = 10

variables, \
continuous_design = 3 \
cdv_initial_point 0 0 0 \
cdv_upper_bounds 4 4 4 \
cdv_lower_bounds -4 -4 -4 \
cdv_descriptor 'x1’ 'x2' 'x3’

interface, \
system \
analysis_driver = 'mogatestl’

responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 2.24: A DAKOTA input file that specifies the use of a multiple objective genetic algorithm (MOGA)
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IMOGA Test Problem #1 - Concave Fareto Frontier
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Figure 2.25: Pareto Front showing Tradeoffs between Function F1 and Function F2

In this example, DAKOTA will select 200 design points from within the parameter space, evaluate the value
of Rosenbrock’s function at all 200 points, and then perform some basic statistical calculations on the 200
response values.

This DAKOTA input file is executed using the following command:

dakota -i dakota_rosenbrock_nond.in > nond.out

See the filemond.out.sav  in /Dakota/GettingStarted/Examples for comparison to the re-
sults produced by DAKOTA. Note that your results will differ from those in this file if yseed value
differs or if noseed is specified.

The statistical data on the 200 Monte Carlo samples is printed at the end of the output file in the section
that starts with “Statistics for each response function....” In this section, DAKOTA outputs the mean, stan-
dard deviation, coefficient of variation, and 95% confidence intervals for each of the response functions,
followed by the percentages of the response function values that are above and below the response thresh-
old values specified in the input file. FiguPe27 shows the locations of the 200 sample sites within the
parameter space of the Rosenbrock function.

2.4.10 Optimization with a User-Supplied Simulation Code - Case 1

Many of the previous examples made use of the direct interface to access the Rosenbrock and textbook test
functions that are compiled into DAKOTA. In engineering applications, it is much more common to use the
system orfork interface approaches within DAKOTA to manage external simulation codes. In both of
these cases, the communication between DAKOTA and the external code is conducted through the reading
and writing of short text files. For this example, the C++ prograsenbrock.C  in /Dakota/test

is used as the simulation code. This file is compiled to create the standrakemrock executable

that is referenced as tlamalysis  _driver in Figure2.28 This stand-alone program performs the same
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strategy, \
single_method \
graphics \
tabular_graphics_data
method, \
nond_sampling \
samples = 200 seed = 17
sample_type random \

response_levels = 100.0

model, \
single

variables, \
uniform_uncertain = 2 \
uuv_lower_bounds -2.0 -2.0 \
uuv_upper_bounds 2.0 2.0 \
uuv_descriptor x1' 'x2’

interface, \
direct \
analysis_driver = ’rosenbrock’ \

responses, \
num_response_functions = 1 \
no_gradients \
no_hessians

Figure 2.26: The DAKOTA input file for the Monte Carlo sampling example problem.
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Figure 2.27: Locations in the parameter space of the 200 Monte Carlo samples using a uniform distribution
for bothz; andx,.

function evaluations as DAKOTA's internal Rosenbrock test function.

Figure2.28shows the text of the DAKOTA input file namethkota _rosenbrock _syscall.in that

is provided in the directoryDakota/GettingStarted/Examples . The only differences between

this input file and the one in Figur@.10occur in theinterfacekeyword section. The keyworslystem
indicates that DAKOTA will use system calls to create separate UNIX processes for executions of the user-
supplied simulation code. The name of the simulation code, and the names for DAKOTA's parameters
and results file are specified using tgalysis _driver , parameters _file ,andresults _file

keywords, respectively.

This example problem is executed using the command:
dakota -i dakota_rosenbrock_syscall.in > syscall.out

This run of DAKOTA takes longer to complete than the previous gradient-based optimization exam-
ple since thesystem interface method has additional process creation and file I/O overhead, as com-
pared to the internal communication that occurs whendihect interface method is used. The file
syscall.out.sav is provided in thdDakota/GettingStarted/Examples directory for com-
parison to the output results produced when executing the command given above.

To gain a better understanding of what exactly DAKOTA is doing withsytem interface method, edit

the input file to remove the comment symbols that are in front of the keyviiteds tag andfile _save

and re-run DAKOTA. Check the listing of the local directory and you will see many new files with names
such agparams.in.l , params.in.2 , etc., andresults.out.1 , results.out.2 , etc. There

is oneparams.in.X file and onaesults.out.X file for each of the function evaluations performed
by DAKOTA. This is the file listing forparams.in.1

2 variables 1 functions
-1.2000000000e+00 x1
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strategy, \
single_method \
graphics \
tabular_graphics_data
method, \
conmin_frcg \
max_iterations = 100 \
convergence_tolerance = le-4 \
model, \
single
variables, \
continuous_design = 2 \
cdv_initial_point  -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptors 'x1’ 'x2' \
interface, \
system \
analysis_driver = ’rosenbrock’ \
parameters_file = ’params.in’ \
results_file = ’results.out’
responses, \
num_objective_functions = 1 \
numerical_gradients \
method_source dakota \
interval_type forward \
fd_gradient_step_size = 1.e-5 \
no_hessians

Figure 2.28: DAKOTA input file for gradient-based optimization using the system call interface to an
external rosenbrock simulator.
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1.0000000000e+00 X2
1 ASV_1

The first line gives the number of variables and the number of response functions. For optimization on
Rosenbrock’s function, there are two variables 4ndx) and one function (the objective function). The
values of the variables are listed next in the file, with the descriptor tag ("x1’ or ‘X2’ from the DAKOTA
input file) following the numerical value. The last line of the parameters file is the syntax for DAKOTA's
active set vector (ASV). There is one ASV line printed in the parameters file for each response function.
In this case, the ASV value of 1 indicates that DAKOTA is requesting that the simulation code return the
response function value to the fitesults.out.X . (ASV syntax: 1 = value of response function, 2

= gradient of response function, 4 = Hessian of response function, and any combination up to 7 = value,
gradient, and Hessian of the response function. See Setfidor more detail.)

The executable program rosenbrock reads inpaeams.in.X  file and evaluates the objective func-
tion at the given values far; andx,. Then, rosenbrock writes out the objective function data to the
results.out.X file. Here is the listing for the fileesults.out.1

2.4200000000e+01 f

The value shown above is the value of the objective function, and the descriptor ‘f’ is an optional tag
returned by the simulation code. When the system call has completed, DAKOTA reads in the data from
theresults.in.X file. Then, DAKOTA continues with executions of the rosenbrock program until the
optimization process is complete.

2.4.11 Optimization with a User-Supplied Simulation Code - Case 2

In many situations the user-supplied simulation code cannot be modified to read and write the
params.in.X file and theresults.out.X file, as described above. Typically, this occurs when

the simulation code is a commercial or proprietary software product that has specific input file and output
file formats. In such cases, it is common to replace the executable program name in the DAKOTA input
file with the name of a UNIX shell script containing a sequence of commands that read and write the
necessary files and run the simulation code. For example, the executable progranrosenbdock

listed in Figure2.28 could be replaced by a UNIX C-shell script namgchulator  _script , with

the script containing a sequence of commands to perform the following steps: insert the data from the
parameters.in.X file into the input file of the simulation code, execute the simulation code, post pro-

cess the files generated by the simulation code to compute response data, and return the response data

to DAKOTA in the results.out. X file. The steps that are typically used in constructing and using a
UNIX shell script are described in Secti@6.1

2.5 Where to Go from Here

This chapter has provided an introduction to the basic capabilities of DAKOTA including parameter studies,
various types of optimization, and uncertainty quantification sampling. More information on the DAKOTA
input file syntax is provided in the remaining chapters in this text and in the DAKOTA Reference Man-
ual [17]. Additional example problems that demonstrate some of DAKOTAs advanced capabilities are
provided in Chaptet0, Chapterl3, Chaptet 6, and ChaptepO.

Here are a few pointers to sections of this manual that many new users find useful:

e Chapter7 describes the different DAKOTA output file formats, including commonly encountered
error messages.
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e Chapterl6 demonstrates how to employ DAKOTA with a user-supplied simulation code.
Most DAKOTA users will follow the approach described in this chapter.

e Chapterl?7 provides guidelines on how to choose an appropriate optimization, uncertainty quantifi-
cation, or parameter study method based on the characteristics of your application.

e Chapterl8describes the file restart and data re-use capabilities of DAKOTA.
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Chapter 3

DAKOTA Capabilities

3.1 Overview

This chapter provides a brief, but comprehensive, overview of DAKOTA's capabilities. Additional details
and example problems are provided in subsequent chapters in this manual.

3.2 Parameter Study Methods

Parameter studies are often performed to explore the effect of parametric changes within simulation models.
DAKOTA provides four parameter study methods that may be selected by the user.

Multidimensional: Forms a regular lattice or grid in an n-dimensional parameter space, where the user
specifies the number of intervals used for each parameter.

Vector: Performs a parameter study along a line between any two points in an n-dimensional parameter
space, where the user specifies the number of steps used in the study.

Centered Given a point in an n-dimensional parameter space, this method evaluates nearby points along
the coordinate axes of the parameter space. The user selects the number of steps and the step size.

List: The user supplies a list of points in an n-dimensional space where DAKOTA will evaluate response
data from the simulation code.

Additional information on these methods is provided in Chater

3.3 Sampling Methods and Design of Experiments

Sampling methods and design of experiments are often used to explore the parameter space of an engineer-
ing design problem. Two software packages are available in DAKOTA for performing these studies, LHS
and DDACE, both of which were developed at Sandia Labs.

LHS (Latin Hypercube Sampling): This package provides both Monte Carlo (random) sampling and latin
hypercube sampling methods, which can be used with probabilistic variables in DAKOTA that have the
following distributions: Gaussian (normal), lognormal, uniform, loguniform, Weibull, and user-supplied
histograms. In addition, the user can supply a correlation matrix for the variables to account for correla-
tions among the variableg}]. The LHS package currently serves two purposes: (1) it can be used for
uncertainty quantification by sampling over uncertain variables characterized by probability distributions
(see Sectio’.4), or (2) it can be used in a DACE mode in which any design and state variables are treated
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as having uniform distributions (see takk _variables flag in the Reference ManualT]). The LHS
package comes in two versions: “old” (circa 1980) and “new” (circa 1998), where only the former may
currently be distributed externally.

DDACE (Distributed Design and Analysis of Computer Experiments) The DACE package includes

both stochastic sampling methods and classical design of experiments metflod$g stochastic meth-

ods are Monte Carlo (random) sampling, latin hypercube sampling, and orthogonal array sampling. The
DDACE package currently supports variables that have either normal or uniform distributions. However,
only the uniform distribution is available in the DAKOTA interface to DDACE. The classical design of
experiments methods in DDACE are central composite design (CCD) and Box-Behnken (BB) sampling.
A grid-based sampling method also is available. DDACE is available under a GNU Lesser General Public
License and is distributed with DAKOTA.

Additional information on these methods is provided in Chagter

3.4 Uncertainty Quantification

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) involve the
computation of probabilistic information about response functions based on sets of simulations taken from
the specified probability distributions for uncertain input parameters. Put another way, these methods
perform a forward uncertainty propagation in which probability information for input parameters is mapped
to probability information for output response functions. The UQ methods in DAKOTA include various
sampling-based approaches (e.g., Monte Carlo and Latin hypercube sampling) discussed previously in
Section3.3, along with analytic reliability methods and stochastic finite element methods.

Analytic Reliability Methods : This suite of methods includes the Advanced Mean Value Method (AMV),

the iterated Advanced Mean Value Method (AMV+), and the First Order Reliability Method (FORM). For

the AMV and AMV+ methods, the user now has the option to specify either probability levels or reliability
levels in the DAKOTA input file. Efforts are currently underway to implement the Second Order Reliability
Method (SORM). In versions 3.0 and 3.1 of DAKOTA, the AMV and AMV+ methods were dependent on

the NPSOL optimization software package. This dependence has been removed, and the user now has a
choice between NPSOL and OPT++.

Stochastic Finite Element Methods The objective of these techniques is to characterize the response of
systems whose governing equations involve stochastic coefficients. The development of these techniques
mirrors that of deterministic finite element analysis utilizing the notions of projection, orthogonality, and
weak convergence’f], [30].

Additional information on these methods is provided in Chap€er

3.5 Optimization Software Packages

Several optimization software packages have been integrated with DAKOTA. These include freely-
available software packages developed by research groups external to Sandia Labs, Sandia-developed soft-
ware that has been released to the public under GNU licenses, and commercially-developed software.
These optimization software packages provide the DAKOTA user with access to well-tested, proven meth-
ods for use in engineering design applications, as well as access to some of the newest developments in
optimization algorithm research.

COLINY : Methods for nongradient-based local and global optimization which utilize the Common Op-
timization Library INterface (COLIN). This algorithm library supersedes the SGOPT library. COLINY
currently includes evolutionary algorithms (including several genetic algorithms and Evolutionary Pat-
tern Search), simple pattern search, Monte Carlo sampling, and the DIRECT and Solis-Wets algorithms.
COLINY also include interfaces to third-party optimizers APP€][and COBYLA2. This software is
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available to the public under a GNU Lesser General Public License (LGPL) through ACRO (A Com-
mon Repository for Optimizers) and the source code for COLINY is included with DAKOTA (web page:
http://www.cs.sandia.gov/Ac)o

CONMIN (CONstrained MINimization) : Methods for gradient-based constrained and unconstrained
optimization p5]. The constrained optimization algorithm is the method of feasible directions (MFD) and
the unconstrained optimization algorithm is the Fletcher-Reeves conjugate gradient (CG) method. This
software is freely available to the public from NASA, and the CONMIN source code is included with
DAKOTA.

DOT (Design Optimization Tools} Methods for gradient-based optimization for constrained and uncon-
strained optimization problems5]]. The algorithms available for constrained optimization are modified-
MFD, SQP, and sequential linear programming (SLP). The algorithms available for unconstrained opti-
mization are the Fletcher-Reeves CG method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton technique. DOT is a commercial software product of Vanderplaats Research and Development,
Inc. (web pagehttp://www.vrand.cofn Sandia National Laboratories and Los Alamos National Labora-
tory have limited seats for DODther users may obtain their own copy of DOT and compile it with the
DAKQOTA source code by following the steps given in the file /Dakota/INSTALL.

JEGA: SOGA/MOGA (Single- or Multi-Objective Genetic Algorithm): John Eddy (member of technical
staff at Sandia) implemented both single- and multi-objective optimization methods that employ genetic
algorithms. The SOGA method provides a basic GA optimization capability that uses many of the same
software elements as the MOGA method. See details on MOGA below.

MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) : formerly known as
rSQP++, MOOCHO provides both general-purpose gradient-based algorithms for nested analysis and de-
sign (NAND) and large-scale gradient-based optimization algorithms for simultaneous analysis and design
(SAND). This software is not yet available to the public.

NPSOL: Methods for gradient-based constrained and unconstrained optimization problems using a sequen-
tial quadratic programming (SQP) algorith@l]. NPSOL is a commercial software product of Stanford
University (web site: www.sbsi-sol-optimize.com). Sandia National Laboratories, Lawrence Livermore
National Laboratory, and Los Alamos National Laboratory all have site licenses for NR®@¢r. users

may obtain their own copy of NPSOL and compile it with the DAKOTA source code by following the steps
given in the file /Dakota/INSTALL.

OPT++: Methods for gradient-based and nongradient-based optimization of unconstrained, bound-
constrained, and nonlinearly constrained optimization problénjsQPT++ includes a variety of Newton-
based methods (quasi-Newton, finite-difference Newton, Gauss-Newton, and full-Newton), as well as the
Polak-Ribeire CG method and the parallel direct search (PDS) method. OPT++ now contains a non-
linear interior point algorithm for handling general constraints. OPT++ is an active research tool and
new optimization capabilities are continually being added to its suite of capabilities. OPT++ is avail-
able to the public under the GNU LGPL and the source code is included with DAKOTA (web page:
http://csmr.ca.sandia.gov/projects/opt++/opt++.html

PICO (Parallel Integer Combinatorial Optimization) : PICQO'’s branch-and-bound algorithm is available

in DAKOTA for use on nonlinear optimization problems involving discrete variables or a combination of
continuous and discrete variablés]. PICO is available to the public under the GNU LGPL and the source
code is included with DAKOTA (web pagénttp://www.cs.sandia.gov/PIQONote: PICO’s methods for
linear programming are not available under DAKOTA.

SGOPT (Stochastic Global OPTimization) Access to this library within DAKOTA has been deprecated,;
the methods have been migrated to the COLINY library.

Additional information on these methods is provided in Chapier
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3.6 Additional Optimization Capabilities

The optimization software packages described above provide algorithms to handle a wide variety of opti-
mization problems. This includes algorithms for constrained and unconstrained optimization, as well as
algorithms for gradient-based and nongradient-based optimization. Listed below are additional optimiza-
tion capabilities that are available in DAKOTA.

MOGA - Multiobjective Optimization with Genetic Algorithms (without Weight Factors) : The

MOGA package allows for the formulation of multiobjective optimization problems without the user spec-
ifying weights on the various objective function values. The MOGA method identifies non-dominated
design points that lie on the Pareto front using a genetic algorithm search method. The advantage of the
MOGA method versus conventional multiobjective optimization with weight factors (see below), is that
MOGA finds points along the entire Pareto front whereas the multiobjective optimization method produces
only a single point on the Pareto front. The advantage of the MOGA method versus the Pareto-set opti-
mization strategy is that MOGA is better able to find points on the Pareto front when the Pareto front is non
convex. However, the use of a GA search method in MOGA causes the MOGA method to be much more
computationally expensive than conventional multiobjective optimization using weight factors.

Multiobjective Optimization (with Weight Factors) : In multiobjective optimization, a composite objec-

tive function is constructed from a set of individual objective functions. The user can specify the scalar
weight factors that are applied to the individual objective functions in computing the composite objective
function. This approach works with any of the optimization methods listed in Se8tbnAlso, both
constrained and unconstrained multiobjective optimization problems can be formulated and solved with
DAKOTA. Note that multiobjective optimization is related to the Pareto-set optimization strategy described
in Section3.8, with the difference that the former computes a single optimum and the latter computes a set
of optima in order to generate a Pareto trade-off surface.

Simultaneous Analysis and Design (SAND)In SAND, one converges the optimization process at the
same time as converging a nonlinear simulation code. In this approach, the solution of the simulation code
(often a system of ordinary or partial differential equations) is posed as a set of equality constraints in the
optimization problem and these equality constraints are only satisfied by the optimizer in the limit. This
formulation necessitates a close coupling between DAKOTA and the simulation code so that the internal
vectors and matrices from the simulation code (in particular, the residual vector and its state and design
Jacobian matrices) are available to the SAND optimizer. This approach has the potential to reduce the cost
of optimization significantly since the nonlinear simulation is only converged once, instead of on every
function evaluation. The drawback is that this approach requires substantial software modifications to the
simulation code; something that can be impractical in some cases and impossible in others. A new SAND
capability employing the MOOCHO library is under development that will intrusively couple DAKOTA
with multiphysics simulation frameworks under development at Sandia.

Additional information on these methods is provided in Chapfer

3.7 Nonlinear Least Squares for Parameter Estimation

Nonlinear least squares methods are optimization algorithms which exploit the special structure of a least
squares objective function (see Sectiod.?. These problems commonly arise in parameter estimation
and test/analysis reconciliation. In practice, least squares solvers will tend to converge more rapidly than
general-purpose optimization algorithms when the residual terms in the least squares formulation tend
towards zero at the solution. Least squares solvers may experience difficulty when the residuals at the so-
lution are significant, although experience has shown that the NL2SOL method can handle some problems
that are highly nonlinear and have nonzero residuals at the solution.

[...add Dennis/Gay/Welsch NL2SOL ref to bibliography — could not save bibliography changes on
20-May]
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NL2SOL: The NL2SOL algorithn{REF] uses a secant-based algorithm to solve least-squares problems.
In practice, it is more robust to nonlinear functions and nonzero residuals than conventional Gauss-Newton
algorithms.

Gauss-Newton DAKOTA's Gauss-Newton algorithm utilizes the Hessian approximation described in Sec-

tion 1.4.2 The exact objective function value, exact objective function gradient, and the approximate ob-
jective function Hessian are defined from the least squares term values and gradients and are passed to the
full-Newton optimizer from the OPT++ software package. As for all of the Newton-based optimization al-
gorithms in OPT++, unconstrained, bound-constrained, and generally-constrained problems are supported.
However, for the generally-constrained case, a derivative order mismatch exists in that the nonlinear interior
point full Newton algorithm will require second-order information for the nonlinear constraints whereas

the Gauss-Newton approximation only requires first order information for the least squares terms.

NLSSOL: The NLSSOL algorithm is a commercial software product of Stanford University (web site:
http://www.sbsi-sol-optimize.cojrthat is bundled with current versions of the NPSOL library. It uses

an SQP-based approach to solve generally-constrained nonlinear least squares problems. It periodically
employs the Gauss-Newton Hessian approximation to accelerate the search. It requires only first-order
information for the least squares terms and nonlinear constraints. Sandia National Laboratories, Lawrence
Livermore National Laboratory, and Los Alamos National Laboratory all have site licenses for NLSSOL.
Other users may obtain their own copy of NLSSOL and compile it with the DAKOTA source code by
following the NPSOL installation steps given in the file /Dakota/INSTALL.

Additional information on these methods is provided in Chapger

3.8 Optimization Strategies

Due to the flexibility of DAKOTA's object-oriented design, it is relatively easy to create algorithms that
combine several of DAKOTA's capabilities. These algorithms are referredstaegies

Multilevel Hybrid Optimization : This strategy allows the user to specify a sequence of optimization
methods, with the results from one method providing the starting point for the next method in the sequence.
An example which is useful in many engineering design problems involves the use of a nongradient-based
global optimization method (e.g., genetic algorithm) to identify a promising region of the parameter space,
which feeds its results into a gradient-based method (quasi-Newton, SQP, etc.) to perform an efficient local
search for the optimum point.

Multistart Local Optimization : This strategy uses many local optimization runs (often gradient-based),
each of which is started from a different initial point in the parameter space. This is an attractive strategy in
situations where multiple local optima are known to exist or may potentially exist in the parameter space.
This approach combines the efficiency of local optimization methods with the parameter space coverage of
a global stratification technique.

Pareto-Set Optimizatiort The Pareto-set optimization strategy allows the user to specify different sets of
weights for the individual objective functions in a multiobjective optimization problem. DAKOTA executes
each of these weighting sets as a separate optimization problem, serially or in parallel, and then outputs the
set of optimal designs which define the Pareto set. Pareto set information can be useful in making trade-off
decisions in engineering design problems.

[Note that the MOGA algorithm (see above) also provides a means to identify points on the Pareto front.]

Mixed Integer Nonlinear Programming (MINLP) : This strategy uses the branch and bound capabilities

of the PICO package to perform optimization on problems that have both discrete and continuous design
variables. PICO provides a branch and bound engine targeted at mixed integer linear programs (MILP),
which when combined with DAKOTA's nonlinear optimization methods, results in a MINLP capability.

In addition, the multiple NLPs solved within MINLP provide an opportunity for concurrent execution of
multiple optimizations.
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Surrogate-Based Optimization (SBO) This strategy combines the sampling methods, approximation
methods, and optimization capabilities of DAKOTA. The SBO strategy is particularly effective on real-
world engineering design problems that contain nonsmooth features (e.g., slope discontinuities, multiple
local minima) where gradient-based optimization methods often have trouble. In SBO, the optimization
algorithm operates on a surrogate model instead of directly operating on the computationally expensive
simulation model. The surrogate model can be formed from data samples and surface fitting methods (see
Section3.9), or it can be a simplified (e.g., coarsened finite element mesh, less detailed) version of the
original computational model. For either type of surrogate model, the SBO algorithm periodically checks
the accuracy of the surrogate model against the original high-fidelity model. The SBO strategy in DAKOTA
can be implemented using heuristic rules (less expensive) or a strategy that is guaranteed to converge (more
expensive). The development of SBO strategies is an area of active research in the DAKOTA project.

Optimization Under Uncertainty (OUU) : Many real-world engineering design problems contain stochas-

tic features and must be treated using OUU methods such as robust design and reliability-based design.
For OUU, the uncertainty quantification methods of DAKOTA are combined with optimization algorithms.
This allows the user to formulate problems where one or more of the objective and constraints are stochas-
tic. Due to the computational expense of both optimization and UQ, the simple nesting of these methods in
OUU can be computationally prohibitive for real-world design problems. For this reason, surrogate-based
OUU methods have been developed which can reduce the overall expense by an order of magnitude or
more. OUU methods are an active research area.

These strategies are covered in more detail in Chaler

3.9 Surface Fitting Methods

Surface fitting methods, often referred tarasponse surface methqdsin be used to explore the variations

in response quantities over regions of the parameter space. In addition, the surfaces can serve as surrogate
models for optimization studies (see the surrogate-based optimization strategy in Se}tidhe surface

fitting methods in DAKOTA include software developed by Sandia researchers and by various researchers
in the academic community. These surface fitting methods work in conjunction with the sampling methods
and design of experiments methods described in Segt®n

Taylor Series Expansion This is a local first-order or second-order model centered at a point in the
parameter space.

Polynomial Regression First-order (linear), second-order (quadratic), and third-order (cubic) polynomial
response surfaces computed using linear least squares regression methods. Note: there is currently no use
of forward- or backward-stepping regression methods to eliminate unnecessary terms from the polynomial
model.

Kriging Interpolation : An implementation of spatial interpolation using kriging methods and Gaussian
correlation functions §6]. The algorithm used in the kriging process generatég-a@ontinuous surface
that exactly interpolates the data values.

Artificial Neural Networks : An implementation of the stochastic layered perceptron neural network de-
veloped by Prof. D. C. Zimmerman of the University of HoustGi][ This neural network method is
intended to have a lower training (fitting) cost than typical neural networks.

Multivariate Adaptive Regression Splines (MARS) Software developed by Prof. J. H. Friedman of
Stanford University §7]. The MARS method creates@?-continuous patchwork of splines in the param-
eter space.

Additional information on these methods is provided in Chapter
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3.10 Parallel Computing

The methods and strategies in DAKOTA are designed to exploit parallel computing resources such as those
found in a desktop multiprocessor workstation, a network of workstations, or a massively parallel comput-
ing platform. This parallel computing capability is a critical technology for rendering real-world engineer-
ing design problems computationally tractable. DAKOTA employs the conceputiflevel parallelism

which takes simultaneous advantage of opportunities for parallel execution from multiple sources:

Parallel Simulation Codes DAKOTA works equally well with both serial and parallel simulation codes.

Concurrent Execution of Analyses within a Function Evaluation Some engineering design applica-

tions call for the use of multiple simulation code executions (different disciplinary codes, the same code
for different load cases or environments, etc.) in order to evaluate a single response data set for a single set
of parameters. If these simulation code executions are independent (or if coupling is enforced at a higher
level), DAKOTA can perform them in parallel.

Concurrent Execution of Function Evaluations within an Iterator: With very few exceptions, the iter-

ative algorithms described in Secti8r2 through Sectior8.7 all provide opportunities for the concurrent
evaluation of response data sets for different parameter sets. Whenever there exists a set of design point
evaluations that are independent, DAKOTA can perform them in parallel.

Concurrent Execution of Iterators within a Strategy: Some of the DAKOTA strategies described in
Section3.8 generate a sequence of iterator subproblems. For example, the MINLP, Pareto-set, and multi-
start strategies generate sets of optimization subproblems, and the optimization under uncertainty strategy
generates sets of uncertainty quantification subproblems. Whenever these subproblems are independent,
DAKOTA can perform them in parallel.

It is important to recognize that these four parallelism levels are nested, in that a strategy can schedule
and manage concurrent iterators, each of which may manage concurrent function evaluations, each of
which may manage concurrent analyses, each of which may execute on multiple processors. Additional
information on parallel computing with DAKOTA is provided in Chapiéx

3.11 Summary

DAKOTA is both a production tool for engineering design and analysis activities and a research tool for
the development of new algorithms in optimization, uncertainty quantification, and related areas. Because
of the extensible, object-oriented design of DAKOTA, it is relatively easy to add new iterative algorithms,
strategies, simulation interfacing approaches, surface fitting methods, etc. In addition, DAKOTA can serve
as a rapid prototyping tool for algorithm development. That is, by having a broad range of building blocks
available (i.e., parallel computing, surrogate models, simulation interfaces, fundamental algorithms, etc.),
new capabilities can be assembled rapidly which leverage the previous software investments. For additional
discussion on framework extensibility, refer to the DAKOTA Developers Manif@l [

The capabilities of DAKOTA have been used to solve engineering design and optimization problems at
Sandia Labs, at other Department of Energy labs, and by our industrial and academic collaborators. Of-
ten, this real-world experience has provided motivation for research into new areas of optimization. The
DAKOTA development team welcomes feedback on the capabilities of this software toolkit, as well as
suggestions for new areas of research.
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Chapter 4

Variables

4.1 Overview

The variables section in a DAKOTA input file specifies the parameter set to be iterated by a particular
method. In the case of an optimization study, these variables are adjusted in order to locate an optimal
design; in the case of parameter studies/sensitivity analysis/design of experiments, these parameters are
perturbed to explore the parameter space; and in the case of uncertainty analysis, the variables are associ-
ated with probabilistic characterizations which are used to quantify the uncertainty in response functions.
To accommodate these and other types of studies, DAKOTA supports design, uncertain, and state variable
types for continuous and discrete variable domains.

This chapter will present a brief overview of the types of variables and their uses, as well as cover some
user issues relating to integer/discrete conversions, file formats, and the active set vector. For a detailed
description of variables section syntax and example specifications, refer to the variables commands chapter
in the DAKOTA Reference Manuall[/].

4.2 Design Variables

Design variables are those variables which are modified for the purposes of computing an optimal design.
These variables may be continuous (real-valued) or discrete (integer-valued).

4.2.1 Continuous Design Variables

The most common type of design variables encountered in engineering applications are of the continuous
type. These variables may assume any real value (@4 , -1.735e+07 ) within their bounds. All
but a handful of the optimization algorithms in DAKOTA support continuous design variables exclusively.

4.2.2 Discrete Design Variables

Engineering design problems may contain discrete variables such as material types, feature counts, stock
gauge selections, etc. These variables may assume only a fixed number of values within their bounds.
While the general discrete variable case would allow this fixed set of values to include real numbers (e.g.,
21 can only assume the valué , 6.4 , and8.5 ), DAKOTA assumes that the discrete variables can be
specified as a sequence of integers (a.gcan bel, 2, or3) and that a mapping from the integer sequence
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to the discrete values can be applied if necessary within the user’s interface. A common mapping is to use
the integer value from DAKOTA as the index into a vector of discrete real values.

Discrete variables may be classified as either “noncategorical” or “categorical” discrete variables. In the
former noncategorical case, the integrality condition can be relaxed during the solution process since the
model can still compute meaningful response functions for non-integer values. For example, a discrete
variable representing the thickness of a structure is generally a noncategorical variable since it can assume
a continuous range of values during the algorithm iterations, even if it is desired to have a stock gauge
thickness in the end. In the latter categorical case, the integrality cannot be relaxed since the model cannot
obtain a solution for a non-integer value. For example, feature counts are generally categorical variables,
since most computational models will not support a non-integer value for the number of instances of some
feature (e.g., number of support brackets).

Gradient-based optimization methods cannot be directly applied to problems with discrete variables. For
problems with noncategorical variables, branch and bound techniques can be used to relax the integrality
conditions and apply gradient-based methods to a series of generated subproblems. For problems with
categorical variables, nongradient-based methods @dtny _ea) are commonly used. Branch and
bound techniques are discussed in Seclidrb and nongradient-based methods are further described in
Chapterll.

In addition to engineering applications, many non-engineering applications in the fields of scheduling,
logistics, and resource allocation contain discrete design parameters. Within the Department of Energy, so-
lution techniques for these problems impact programs in stockpile evaluation and management, production
planning, nonproliferation, transportation (routing, packing, logistics), infrastructure analysis and design,
energy production, environmental remediation, and tools for massively parallel computing such as domain
decomposition and meshing.

4.3 Uncertain Variables

Deterministic variables (i.e., those with a single known value) do not capture the behavior of the input
variables in all situations. In many cases, the exact value of a model parameter is not precisely known. An
example of such an input variable is the thickness of a heat treatment coating on a structural steel I-beam
used in building construction. Due to variabilities and tolerances in the coating process, the thickness of
the layer is known to follow a normal distribution with a certain mean and standard deviation as determined
from experimental data. The inclusion of the uncertainty in the coating thickness is essential to accurately
represent the resulting uncertainty in the response of the building.

Currently, uncertain variables in DAKOTA are modeled as continuous random variables, or in the case of
histogram, with an empirical histogram representation. If a problem contains discrete random variables,
then these variables can be modeled using the point-based histogram representation. The following types
of uncertain variables are available:

e Normal: characterized by a mean and standard deviation. Also referred to as Gaussian. Bounded
normal is also supported with an additional specification of lower and upper bounds.

e Lognormal: characterized by a mean and either a standard deviation or an error factor. The natural
logarithm of a lognormal variable has a normal distribution. Bounded lognormal is also supported
with an additional specification of lower and upper bounds.

e Uniform: characterized by a lower bound and an upper bound. Probability is constant between the
bounds.

e Loguniform: characterized by a lower bound and an upper bound. The natural logarithm of a logu-
niform variable has a uniform distribution.

e Weibull: characterized by an alpha parameter and a beta parameter.
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e Histogram: characterized by a set(af y) pairs that either map out histogram bins (a continuous
interval with associated bin count) or histogram points (a discrete point value with associated count).

DAKOTA also supports a user-supplied correlation matrix to provide correlations among the uncertain
input variables. By default, the correlation matrix is set to the identity matrix, i.e., no correlation among
the uncertain variables.

For additional information on random variable probability distributions, refef ipdnd [71]. Refer to the
DAKOTA Reference Manuall[/] for more detail on the uncertain variable specifications and to Chapter
for a description of methods available to quantify the uncertainty in the response.

4.4 State Variables

State variables consist of “other” variables which are to be mapped through the simulation interface, in that
they are not to be used for design and they are not modeled as being uncertain. State variables provide
a convenient mechanism for parameterizing additional model inputs which, in the case of a numerical
simulator, might include solver convergence tolerances, time step controls, or mesh fidelity parameters.
Similar to the design variables discussed in Sedfidhstate variables can be continuous (real-valued) or
discrete (integer-valued). For discrete variables which are not a sequence of integers, a mapping can be
applied between the integer and discrete values in the user’s interface.

State variables, as with other types of variables, are viewed differently depending on the method in use.
Since these variables are neither design nor uncertain variables, algorithms for optimization, least squares,
and uncertainty quantification do not iterate on these variables; i.e., they are not active and are hidden from
the algorithm. However, DAKOTA still maps these variables through the user’s interface where they affect
the computational model in use. This allows optimization, least squares, and uncertainty quantification
studies to be executed under different simulation conditions (which will result, in general, in different
results). Parameter studies and design of experiments methods, on the other hand, are general-purpose
iterative techniques which do not draw a distinction between variable types. They include state variables

in the set of variables to be iterated, which allows these studies to explore the effect of state variable values
on the response data of interest.

In the future, state variables might be used in direct coordination with an optimization, least squares, or
uncertainty quantification algorithm. For example, state variables could be used to enact model adaptivity
through the use of a coarse mesh or loose solver tolerances in the initial stages of an optimization with
continuous model refinement as the algorithm nears the optimal solution.

4.5 Mixed Variables

The iterative method selected for use in DAKOTA determines what subset, or view, of the variables data
is active in the iteration. The general case of having a mixture of various different types of variables is
supported within all of the DAKOTA methods even though certain methods will only modify certain types
of variables (e.g., optimizers and least squares methods only modify design variables, and uncertainty
guantification methods only utilize uncertain variables). This implies that variables which are not under
the direct control of a particular iterator will be mapped through the interface unmaodified for all evaluations
of the iterator. This allows for a variety of parameterizations within the model in addition to those which
are being used by a particular iterator, which can provide the convenience of consolidating the control over
various modeling parameters in a single file (the DAKOTA input file). An important related point is that
the variable set that is active with a particular iterator is the same variable set for which derivatives are
computed (see Sectidh3).
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4.6 DAKOTA Parameters File Data Format

Application interfaces which employ system calls and forks to create separate simulation processes must
communicate with the simulation through the file system. This is accomplished through the reading and
writing of parameters and results files. DAKOTA uses its own format for this data input/output. Depending
on the user’s interface specification, DAKOTA will write the parameters file in either standard or APRE-
PRO format. The former option uses a simplalte tag ”format, whereas the latter option uses a

“{ tag = value }"format for compatibility with the APREPRO utilityc[1].

4.6.1 Parameters file format (standard)

Prior to invoking a simulation, DAKOTA creates a parameters file which contains the current parameter
values and a set of function requests. The standard format for this parameters file is shown id.Eigure

where <int> " denotes an integer valuestiouble> ” denotes a double precision value, and “ " in-

dicates omitted lines for brevity. The first line specifies the total number of variabjesdth its identifier

string “variables " followed by the number of functionan§ with its identifier string functions .

These integers are useful for dynamic memory allocation within a simulator or filter program. The next

n lines specify the current values and descriptors of all of the variables within the paramadtethset
following order. continuous design, discrete design, normal uncertain, lognormal uncertain, uniform un-
certain, loguniform uncertain, weibull uncertain, histogram uncertain (bin histograms followed by point
histograms), continuous state, and discrete state variables. The lengths of these vectors add to a total of
n (that isincdv + Nddv + Nnuv + Ninuwe + Nuwe + Nuwe + Nwun + Nhuy + Nesy + Ndsy = Tl) If any

of the variable types are not present in the problem, then its block is omitted entirely from the parameters
file. The tags are the variable descriptors specified in the user's DAKOTA input file, or if no descriptors
have been specified, default descriptors are used. Thamiexs specify the request vector for each of

the mfunctions in the response data set. These integer codes indicate what data is required on the current
function evaluation and are described further in Secfion

4.6.2 Parameters file format (APREPRO)

For the APREPRO format option, the same data is present and the same ordering is used as in the standard
format. The only difference is that values are associated with their tags withiag = value " con-

structs as shown in Figuke2 This allows direct usage of these parameters files by either the APREPRO

or DPREPRO utility, which are file pre-processors that can significantly simplify model parameterization.
[Note: APREPRO is a Sandia-developed pre-processor that is not distributed with DAKOTA. DPREPRO

is a Perl script that performs many of the same functions as APREPRO, and DPREPRO is distributed with
DAKOTA.]When a parameters file in APREPRO format is included within a template file (using an include
directive), the APREPRO utility recognizes these constructs as variable definitions which can then be used
to populate targets throughout the template fild [

4.7 The Active Set Vector

The active set vector contains a set of integer codes, one per response function, which describe the data
needed on a particular execution of an interface. Integer values of 0 through 7 denote a 3-bit binary rep-
resentation of all possible combinations of value, gradient, and Hessian requests for a particular function,
with the most significant bit denoting the Hessian, the middle bit denoting the gradient, and the least sig-
nificant bit denoting the value. The specific translations are shown in Fable

The active set vector in DAKOTA gets its name from managing the active set, i.e., the set of functions that
are active on a particular function evaluation. However, it also manages the type of data that is needed
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<double> <var_tag_cdv 1>
<double> <var_tag_cdv 9>

<double> <var_tag_cdv = ,>
<int> <var_tag_ddv 1>
<int> <var_tag_ddv 2>

<int> <var_tag_ddv n>
<double> <var_tag_nuv >
<double> <var_tag_nuv = o>

<double> <var_tag_nuv >
<double> <var_tag_Ilnuv 1>
<double> <var_tag_Inuv 2>

<double> <var_tag_Inuv n>
<double> <var_tag_uuv ;>
<double> <var_tag_uuv = 5>

<double> <var_tag_uuv >
<double> <var_tag_luuv 1>
<double> <var_tag_luuv 2>

<double> <var_tag_luuv n>
<double> <var_tag_ wuv >
<double> <var_tag_ wuv 5>

<double> <var_tag_wuv >
<double> <var_tag_huv >
<double> <var_tag_huv 5>

<double> <var_tag_huv >
<double> <var_tag_csv >
<double> <var_tag_csv 9>

<double> <var_tag_csv n>
<int> <var_tag_dsv 1>
<int> <var_tag_dsv 2>

<int> <var_tag_dsv n>
<int> ASV_1
<int> ASV_2

<int> ASV_m

Figure 4.1: Parameters file data format - standard option.
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DAKOTA_VARS = <int> }

DAKOTA_FNS
<var_tag_cdv
<var_tag_cdv

<var_tag_cdv
<var_tag_ddv
<var_tag_ddv

<var_tag_ddv
<var_tag_nuv
<var_tag_nuv

<var_tag_nuv
<var_tag_Inuv
<var_tag_Inuv

<var_tag_Inuv
<var_tag_uuv
<var_tag_uuv

<var_tag_uuv
<var_tag_luuv
<var_tag_luuv

<var_tag_luuv
<var_tag_wuv
<var_tag_wuv

<var_tag_wuv
<var_tag _huv
<var_tag_huv

<var_tag _huv
<var_tag_csv
<var_tag_csv

<var_tag_csv
<var_tag_dsv
<var_tag dsv

<var_tag_dsv
ASV_1 = <int>
ASV_2 = <int>

= <int> }
1> = <double>

5> = <double>
»> = <double>
1> = <int> }
9> = <int> }
2> = <int> }
1> = <double>
5> = <double>

»> = <double>
1> = <double>
2> = <double>

»> = <double>
1> = <double>
5> = <double>

»> = <double>
1> = <double>
2> = <double>

»> = <double>

1> = <double>
5> = <double>
n> = <double>
1> = <double>
2> = <double>
»> = <double>
1> = <double>
2> = <double>
»> = <double>
1> = <int> }
9> = <int> }
p> = <int> '}

ASV_m = <int> }

— S S O e ——

Figure 4.2: Parameters file data format - APREPRO option.
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Table 4.1: Active set vector integer codes.

Integer Code| Binary representation Meaning
7 111 Get Hessian, gradient, and value
6 110 Get Hessian and gradient
5 101 Get Hessian and value
4 100 Get Hessian
3 011 Get gradient and value
2 010 Get gradient
1 001 Get value
0 000 No data required, function is inactive

for functions that are active, and in that sense, has an extended meaning beyond that typically used in the
optimization literature.

4.7.1 Active set vector control

Active set vector control may be turned off to allow the user to simplify the supplied interface by re-
moving the need to check the content of the active set vector on each evaluation. The Interface Com-
mands chapter in the Reference Manual provides additional information on this ogéiactiate

active _set _vector ). Of course, this option trades some efficiency for simplicity and is most appro-
priate for those cases in which only a relatively small penalty occurs when computing and returning more
data than may be needed on a particular function evaluation.
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Chapter 5

Interfaces

5.1 Overview

The interface section in a DAKOTA input file specifies how function evaluations will be performed. The
mechanisms currently in place for performing function evaluations involve interfacing either with an ap-
plication (i.e., a computational simulation code) or with an approximation (i.e., a surrogate-model).

In the case of a simulation code, thpplication interface is used to invoke the simulation with either
system calls, forks, or direct function invocations. In the system call and fork cases, a separate process
is created for the simulation and communication between DAKOTA and the simulation occurs through
parameter and response files. For system call and fork interfaces, then, the interface section must also
specify the details of this data transfer. In the direct function case, a separate process is not created and
communication occurs directly through the function parameter list. Segtkihrough Sectio®.5provide
information on the application interfacing approaches.

In the case of use of an approximation in place of an expensive simulation coalgyroximation  in-
terface can be selected to make use of surrogate modeling capabilities available within DAKOTA. Surrogate
models are discussed further in Chayitér

This chapter will present an overview of the application interface procedures and components, as well as
cover issues relating to file management and example data mappings. For a detailed description of interface
section syntax, refer to the interface commands chapter in the DAKOTA Reference Marjual [

5.2 The Direct Function Application Interface

The direct function interface capability may be used to invoke simulations which are linked into the
DAKOTA executable. This interface eliminates overhead from process creation and file I/O and can sim-
plify operations on massively parallel computers. These advantages are balanced with the practicality of
converting an existing simulation code into a link library with a subroutine interface. Sandia’s SALINAS
structural dynamics code and Phoenix Integration’s ModelCenter framework have been linked in this way,
and a direct interface to Sandia’s SIERRA multiphysics framework is under development. In the latter case,
the additional effort is particularly justified since SIERRA unifies an entire suite of physics codes.

In addition to direct linking with simulation codes, the direct interface also provides access to internal
polynomial test functions that are used for algorithm performance and regression testing. The follow-
ing test functions are availableextbook (includingtext _bookl ,text _book2 ,text _book3, and

text _book _ouu), rosenbrock , cylinder _head, andcantilever . While these functions are

also available as external programs in tbakota/test directory, maintaining internally linked ver-
sions allows more rapid testing. See Cha@@rfor additional information on these test problems. An
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example input specification for a direct interface follows:

interface, \
application direct, \
analysis_driver = ’'rosenbrock’

Additional specification examples are provided in Secfofy additional information on asynchronous
usage of the direct function interface is provided in Sectibr8.1 and the details of adding a simulation
code to the direct interface are provided in Secfiér

5.3 The System Call Application Interface

The system call approach invokes a simulation code or simulation driver by usisggtesn function

from the standard C library!f]. In this approach, the system call creates a new process which communi-
cates with DAKOTA through parameter and response files. The system call approach allows the simulation
to be initiated via its standard invocation procedure (as a “black box”) and then coordinated with any variety
of tools for pre- and post-processing. This approach has been widely used in previous st{Jd{es].

The system call approach involves more process creation and file I/O overhead than the direct function
approach; however, this is most often of very little significance relative to the expense of the simulations.
An example of a system call interface specification follows:

interface, \
application system, \
analysis_driver = ’text_book’ \
parameters_file = ’text_book.in’ \
results_file = ’'text_book.out’ \
file_tag \
file_save

More detailed examples of using the system call interface are provided in S@cfiddand in Sec-
tion 16.2 and information on asynchronous usage of the system call interface is provided in 3&c3i@n

5.4 The Fork Application Interface

The fork application interface uses thark , exec, andwait families of functions to manage simu-
lation codes or simulation drivers. Therk or vfork calls create a copy of the DAKOTA process,
execvp replaces this copy with the simulation code or driver process, and then DAKOTA useaithe
orwaitpid  functions to wait for completion of the new process. Transfer of variables and response data
between DAKOTA and the simulator code or driver occurs through the file system in exactly the same
manner as for the system call interface. An example of a fork interface specification follows:

interface, \
application fork, \

input_filter = ’test_3pc_if \
output_filter = ’'test_3pc_of \
analysis_driver = 'test_3pc_ac’ \
parameters_file = ’tb.in’ \
results_file = 'tb.out’ \
file_tag

Information on asynchronous usage of the fork interface is provided in S&iGB
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5.5 Fork or System Call: Which to Use?

The primary operational difference between the fork and system call application interfaces is that, in the
fork interface, thefork /exec functions return a UNIX process identifier which can be utilized by the

wait /waitpid functions to detect the completion of a simulation, whereas the system call application
interface must use a response file detection scheme for this purpose. Thus, an important advantage of the
fork interface over the system call interface is that it avoids the potential of a file race condition. This
condition can occur when the responses file has been created but the writing of the response data set to
this file has not been completed (see Seclibr.). While significant care has been taken to manage this

file race condition in the system call case, the fork interface still has the potential to be more robust when
performing function evaluations asynchronously.

Another advantage of the fork interface is that it has additional asynchronous capabilities when a function
evaluation involves multiple analyses. As shown in TdlBel, the fork interface supports asynchronous
local and hybrid parallelism modes for managing concurrent analyses within function evaluations, whereas
the system call interface does not. These additional capabilities again stem from the ability to track child
processes by their UNIX process identifiers.

The only observed disadvantage to the fork interface in comparison to the system interface is that the
fork /exec /wait functions are not part of the standard C library, whereasyséem function is. As

a result, support for implementations of tfeek /exec /wait functions can vary from platform to plat-

form. At one time, these commands were not available on some of Sandia’s massively parallel computers.
However, in the more mainstream UNIX environments, availabilitfjook /exec /wait should not be

an issue.

In summary, the system call interface has been a workhorse for many years and is well tested and proven.
However, the fork interface supports additional capabilities and is recommended when managing asyn-
chronous simulation code executions. Having both interfaces available has proven to be useful on a number
of occasions and they will both continue to be supported for the foreseeable future.

5.6 Interface Components

Figure5.1is an extension of Figur&.1 which adds the detail of the components that make up each of

the application interfaces (system call, fork, and direct). These components inclutguan filter

(“IFilter”), one or moreanalysis _drivers , and anoutput filter (“OFilter”). The input and

output filters provide optional facilities for managing simulation pre- and post-processing, respectively.
More specifically, the input filter can be used to insert the DAKOTA parameters into the input files required
by the simulator program, and the output filter can be used to recover the raw data from the simulation
results and compute the desired response data set. If there is a single analysis code, it is often convenient
to combine these pre- and post-processing functions into a single simulation driver script, and the separate
input and output filter facilities are rarely used in this case. If there are multiple analysis drivers, however,
the input and output filter facilities provide a convenient means for managingepeatedportions of

the pre- and post-processing for multiple analyses. That is, pre- and post-processing tasks that must be
performed for each analysis can be performed within the individual analysis drivers, and shared pre- and
post-processing tasks that are only performed once for the set of analyses can be performed within the input
and output filters.

When spawning function evaluations using system calls or forks, DAKOTA must communicate parameter
and response data with the analysis drivers and filters through use of the file system. This is accomplished
by passing the names of the parameters and results files on the command line when executing an analysis
driver or filter. The input filter or analysis driver read data from the parameters file and the output filter

or analysis driver write the appropriate data to the responses file. While not essential when the file names
are fixed, the file names must be retrieved from the command line when DAKOTA is changing the file
names from one function evaluation to the next (i.e., using UNIX temporary files or root names tagged
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Figure 5.1: Components of the application interface

with numerical identifiers). In the case of a UNIX C-shell script, the two command line arguments are
retrieved usindgbargv[l] and$argv[2] (see []). In the case of a C or C++ program, command line
arguments are retrieved usiaggc (argument count) andrgv (argument vector)/6], and for Fortran

77, theiargc  function returns the argument count and tetarg subroutine returns command line
arguments.

5.6.1 Single analysis driver without filters

If a singleanalysis _driver is selected in the interface specification to perform the complete param-
eters to responses mapping and filters are not needed (as indicated by omissiompéithefilter
andoutput filter specifications), then only one process will appear in the execution syntax of the
application interface. An example of this syntax in the system call case is:

(driver params.in results.out)

where ‘driver " is the user-specified analysis driver anghfams.in " and “results.out " are the
names of the parameters and results files, respectively, passed on the command line. In this case, the user
need not retrieve the command line arguments since the same file names will be employed each time.

For the same mapping, the fork application interface echoes the following syntax:
blocking fork: driver params.in results.out

for which only a single blocking fork is needed to perform the evaluation.

Executing the same mapping with the direct application interface results in an echo of the following syntax:
Direct function: invoking driver

where this analysis driver must be linked as a function within DAKOTA's direct interface (see S&6tin

Note that no files are involved for communication of parameter and response data, since this data is passed
directly through the function parameter lists. Execution of the direct interface must currently be performed
synchronously since multithreading is not yet supported.
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Both the system call and fork interfaces support asynchronous operations. The asynchronous system call
execution syntax involves executing the system call in the background:

(driver params.in.1 results.out.1) &
and the asynchronous fork execution syntax involves use of a nonblocking fork:
nonblocking fork: driver params.in.1 results.out.1

where file tagging (see Sectidn7.2 has been user-specified in both cases to prevent conflicts between
concurrent analysis drivers. In these cases, the user must retrieve the command line arguments since the
file names change on each evaluation.

5.6.2 Single analysis driver with filters

When filters are used, the syntax of the system call that DAKOTA performs is:

(ifilter params.in results.out;
driver params.in results.out;
ofilter params.in results.out)

in which the input filter (ffilter "), analysis driver (driver ), and output filter (‘bfilter ") pro-
cesses are combined into a single system call through the use of semi-colons and parentheé§eee [
three portions are passed the hames of the parameters and results files on the command line.

For the same mapping, the fork application interface echoes the following syntax:

blocking fork: fifilter params.in results.out;
driver params.in results.out;
ofilter params.in results.out

where a series of three blocking forks is used to perform the evaluation.
Executing the same mapping with the direct application interface results in an echo of the following syntax:

Direct function: invoking { fifilter driver ofilter }

where each of the three components must be linked as a function within DAKOTA's direct interface. Since
asynchronous operations are not yet supported, execution simply involves invocation of each of the three
linked functions in succession. Again, no files are involved since parameter and response data are passed
directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter params.in.1 results.out.1;
driver params.in.1 results.out.1;
ofilter params.in.1l results.out.1) &

and, for the fork interface, as:

nonblocking fork: ifilter params.in.1 results.out.1;
driver params.in.1 results.out.1;
ofilter params.in.1 results.out.1
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where file tagging of evaluations has again been user-specified in both cases. For the system call application
interface, use of parentheses and semi-colons to bind the three processes into a single system call simplifies
asynchronous process management compared to an approach using separate system calls. The fork applica-
tion interface, on the other hand, does not rely on parentheses and accomplishes asynchronous operations
by first forking an intermediate process. This intermediate process is then reforked for the execution of
the input filter, analysis driver, and output filter. The intermediate process can be blocking or nonblocking
(nonblocking in this case), and the second level of forks can be blocking or nonblocking (blocking in this
case). The fact that forks can be reforked multiple times using either blocking or nonblocking approaches
provides the enhanced flexibility to support a variety of parallelism models (see Ch&pter

5.6.3 Multiple analysis drivers without filters

If a list of analysis _drivers is specified and filters are not needed (as indicated by omission of the
input filter andoutput filter specifications), then the system call syntax would appear as:

(driverl params.in results.out.l;
driver2 params.in results.out.2;
driver3 params.in results.out.3)

where ‘driverl ", “driver2 ", and “driver3 " are the user-specified analysis drivers and
“params.in " and “results.out " are the user-selected names of the parameters and results files.
Note that the results files for the different analysis drivers have been automatically tagged to prevent over-
writing. This automatic tagging ainalyseqsee Sectiob.7.4) is a separate operation from user-selected
tagging ofevaluationgsee Sectios.7.29.

For the same mapping, the fork application interface echoes the following syntax:
blocking fork: driverl params.in results.out.1;
driver2 params.in results.out.2;
driver3 params.in results.out.3
for which a series of three blocking forks is needed (no reforking of an intermediate process is required).
Executing the same mapping with the direct application interface results in an echo of the following syntax:

Direct function: invoking { driverl driver2 driver3 }

where, again, each of these components must be linked within DAKOTA's direct interface and no files are
involved for parameter and response data transfer.

Both the system call and fork interfaces support asynchronous function evaluations. The asynchronous
system call execution syntax would be reported as

(driverl params.in.1 results.out.1.1;
driver2 params.in.1l results.out.1.2;
driver3 params.in.1l results.out.1.3) &

and the nonblocking fork execution syntax would be reported as

nonblocking fork: driverl params.in.l results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1l results.out.1.3

where, in both cases, file tagging of evaluations has been user-specified to prevent conflicts between con-
current analysis drivers and file tagging of the results files for multiple analyses is automatically used. In
the fork interface case, an intermediate process is forked to allow a non-blocking function evaluation, and
this intermediate process is then reforked for the execution of each of the analysis drivers.

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



5.6 Interface Components 77

5.6.4 Multiple analysis drivers with filters

Finally, when combining filters with multiplanalysis _drivers , the syntax of the system call that
DAKOTA performs is:

(ifilter params.in.1 results.out.1;
driverl params.in.1l results.out.1.1;
driver2 params.in.1l results.out.1.2;
driver3 params.in.1l results.out.1.3;
ofilter params.in.1 results.out.1)

in which all processes have again been combined into a single system call through the use of semi-colons
and parentheses. Note that the secondary file tagging for the results files is only used for the analysis
drivers and not for the filters. This is consistent with the filters’ defined purpose of managing the non-
repeated portions of analysis pre- and post-processing (e.g., overlay of response results from individual
analyses; see Secti@n?.4for additional information).

For the same mapping, the fork application interface echoes the following syntax:

blocking fork: ifilter params.in.1 results.out.1;
driverl params.in.1l results.out.1.1;
driver2 params.in.1l results.out.1.2;
driver3 params.in.1l results.out.1.3;
ofilter params.in.1 results.out.1

for which a series of five blocking forks is used (no reforking of an intermediate process is required).

Executing the same mapping with the direct application interface results in an echo of the following syntax:

Direct function: invoking { ifilter driverl driver2 driver3
ofilter }

where each of these components must be linked as a function within DAKOTA's direct interface. Since
asynchronous operations are not supported, execution simply involves invocation of each of the five linked
functions in succession. Again, no files are involved for parameter and response data transfer since this
data is passed directly through the function parameter lists.

Asynchronous executions would appear as follows for the system call interface:

(ifilter params.in.1 results.out.1;
driverl params.in.1l results.out.1.1;
driver2 params.in.1 results.out.1.2;
driver3 params.in.1 results.out.1.3;
ofilter params.in.1 results.out.1) &

and for the fork interface:

nonblocking fork: ifilter params.in.1 results.out.1;
driverl params.in.1 results.out.1.1;
driver2 params.in.1l results.out.1.2;
driver3 params.in.1l results.out.1.3;
ofilter params.in.1 results.out.1

where, again, user-selected file tagging of evaluations is combined with automatic file tagging of analyses.
In the fork interface case, an intermediate process is forked to allow a non-blocking function evaluation,

and this intermediate process is then reforked for the execution of the input filter, each of the analysis
drivers, and the output filter.
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5.7 File Management

This section describes some of the file management features that are employed during an execution of
DAKOTA when file transfer of data is used for the communication between DAKOTA and the simulation
code (i.e., when the system call or fork interfaces are used). These features can be used for generating
unique filenames when utilizing DAKOTA's parallel execution capabilities and for debugging purposes
when troubleshooting the interface between DAKOTA and the simulation code.

5.7.1 File Saving

Thefile _save option in the interface specification allows the user to control whether parameters and
results files are retained or removed from the working directory. DAKOTA's default behavior is to remove
files once their use is complete in order to not clutter the working directory. If the method output setting is
verbose, a file remove notification will follow the function evaluation echo, e.g.:

(driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305)
Removing /usr/tmp/aaaa20305 and /usr/tmp/baaa20305

However, by specifyindile _save in the interface specification, these files will not be removed. This
latter behavior is often useful for debugging communication between DAKOTA and simulator programs.
An example of dile _save specification is shown in the file tagging example below.

5.7.2 File Tagging for Evaluations

When a user providgzarameters _file andresults _file specifications, théle _tag optionin

the interface specification allows the user to render the names of these parameters and results files unique
by appending the function evaluation number to the root file names. Default behavior is to not tag these
files, which has the advantage of allowing the user to ignore command line argument passing and always
read to and write from the same file names. However, it has the disadvantage that files may be overwritten
from one function evaluation to the next. By specifyiiilg _tag in the interface specification, the file

names become unique through the appended evaluation number. This uniqueness makes it necessary for the
user’s interface to retrieve the names of these files from the command line. The file tagging feature is most
often used when concurrent simulations are running in a common disk space, since it can prevent conflicts
between the simulations. An example specificatiofilef _tag andfile _save is shown below:

interface, \
application system, \
analysis_driver = 'text_book’ \
parameters_file = ‘text_book.in® \
results_file = ‘text_book.out” '\
file_tag \
file_save

Special caseWhen a user specifies names for the parameters and results filéiteandsave is used
withoutfile _tag , untagged files are used in the function evaluation but are then moved to tagged files
after the function evaluation is complete in order to prevent overwriting files for whitdle a _save
request has been given. If the output control is set to verbose, then a notification similar to the following
will follow the function evaluation echo:

(driver params.in results.out)

Files with nonuniqgue names will be tagged to enable
file_save:

Moving params.in to params.in.1

Moving results.out to results.out.1
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5.7.3 UNIX Temporary Files

If parameters _file andresults _file are not specified by the user, then the default mechanisms
for file communication are UNIX temporary files. For example, a system call to a single analysis driver
would appear as:

(driver /usr/tmp/aaaa20305 /usr/tmp/baaa20305)
and a system call to an analysis driver with filter programs would appear as:

(ifilter /usr/tmp/aaaa22490 usr/tmp/baaa22490;
driver /usritmp/aaaa22490 usr/tmp/baaa22490;
ofilter /usr/tmp/aaaa22490 /usr/tmp/baaa22490)

These files have unique names as created byntipmam utility from the C standard library/[6]. This
uniqueness makes it a requirement for the user’s interface to retrieve the names of these files from the
command line. File tagging with evaluation number is unnecessary with UNIX temporary files (since they
are already unique); thufile _tag requests will be ignored. Aile _save request will be honored,

but it should be used with care since the temporary file directory could easily become cluttered without the
user noticing.

5.7.4 File Tagging for Analysis Drivers

When multiple analysis drivers are involved in performing a function evaluation with either the system
call or fork application interface, a secondary file taggingusomaticallyused in order to distinguish the

results files used for the individual analyses. This applies to both the case of user-specified names for
the parameters and results files and the default UNIX temporary file case. Examples for the former case
were shown previously in Sectidn6.3and Sectiorb.6.4 The following examples demonstrate the latter

UNIX temporary file case. Even though Unix temporary files have unique names for a particular function
evaluation, a tagging is still needed to manage the individual contributions of the different analysis drivers

to the response results, since the same root results filename is used for each component. For the system
call interface, the syntax would be similar to the following:

(ifiter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;
driverl /var/tmp/aaawkaOKZ /vartmp/baaxkaOKZ.1;
driver2 /vartmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ)

and, for the fork interface, similar to:

blocking fork:
ifilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ;
driverl /vartmp/aaawkaOKZ /var/tmp/baaxkaOKZ.1;
driver2 /vartmp/aaawkaOKZ /var/tmp/baaxkaOKZ.2;
driver3 /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ.3;
ofilter /var/tmp/aaawkaOKZ /var/tmp/baaxkaOKZ

The tagging of the results files with an analysis identifier is needed since each of the analysis drivers
is responsible for contributing a user-defined subset of the total response results for the evaluation.
If an output filter is not supplied, then DAKOTA will combine these portions through a simple
overlaying of the individual contributions (i.e., summing the resultgviar/tmp/baaxkaOKZ.1 ,
Ivar/tmp/baaxkaOKZ.2 , and/var/tmp/baaxkaOKZ.3 ). If this simple approach is inadequate,

then an output filter should be supplied to perform the combination. This is the reason why the results file
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for the output filter does not use analysis tagging; it is responsible for the results combination (i.e., combin-
ing /var/tmp/baaxkaOKZ.1 , Ivar/tmp/baaxkaOKZ.2 , and/var/tmp/baaxkaOKZ.3 into
Ivar/tmp/baaxkaOKZ ). In this case, DAKOTA will read only the results file from the output filter
(i.e.,/varltmp/baaxkaOKZ ) and interpret it as the total response set for the evaluation.

Parameters files are not currently tagged with an analysis identifier. This reflects the fact that DAKOTA
does not attempt to subdivide the requests in the active set vector for different analysis portions. Rather,
the total active set vector is passed to each analysis driver and the appropriate subdivisionmiistdsk

defined by the usefhis allows the division of labor to be very flexible. In some cases, this division might
occur across response functions, with different analysis drivers managing the data requests for different re-
sponse functions. And in other cases, the subdivision might occur within response functions, with different
analysis drivers contributing portions to each of the response functions. The only restriction is that each
of the analysis drivers must follow the response format dictated by the total active set vector. For response
data for which an analysis driver has no contribution, 0’s must be used as placeholders.

5.8 Parameter to Response Mappings

Following are several examples of interface mappings as evidenced by the parameters files and correspond-
ing results files. A typical input file for 2 variables (= 2) and 3 functions . = 3) using the standard
parameters file format (see Sectib6.]) is as follows:

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
1 ASV_1

1 ASV_2

1 ASV_ 3

where the numerical values are associated with their tags witlsilué tag " constructs. The number

of design variables®) and the stringVariables " are followed by the number of functionsi) and the

string “functions ", the values of the design variables and their tags, and the active set vector (ASV)
and its tags. The descriptive tags for the variables are always present and they are either the descriptors
specified in the user’s variables specification or are default descriptors if none were provided. The length
of the active set vector is equal to the number of function$. (In the case of an optimization data set

with an objective function and two nonlinear constraints (three response functions total), the first ASV
value is associated with the objective function and the remaining two are associated with the constraints (in
whatever consistent constraint order has been defined by the user).

For the APREPRO format option (see SecttbB.?, the same set of data appears as follows:

{ DAKOTA_VARS
{ DAKOTA_FNS
{ cdv_1

{ cdv_2

{ ASV_1

{ ASV_2

{ ASV_3

2}
3
1.5
1.5

}
000000000e+00 }
000000000e+00 }

o n
|l
e

where the numerical values are associated with their tags withimy = value  }” constructs.

The user-supplied application interface, comprised of a simulator program or driver and (optionally) filter
programs, is responsible for reading the parameters file and creating a results file that contains the response
data requested in the ASV. This response data is written in the format described in $eZtiBimce the

ASV contains all ones in this case, the response file corresponding to the above input file would contain
values for the three functions:
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1.2500000000e-01 f
1.5000000000e+00 c1
1.7500000000e+00 c2

Since function tags are optional, the following would be equally acceptable:

1.2500000000e-01
1.5000000000e+00
1.7500000000e+00

For the same parameters with different ASV components,

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
3 ASV 1

3 ASV_ 2

3 ASV_3

the following response data is required:

1.2500000000e-01 f

1.5000000000e+00 c1

1.7500000000e+00 c2

[ 5.0000000000e-01 5.0000000000e-01 ]
[ 3.0000000000e+00 -5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]

Here, we need not only the function values, but also each of their gradients. Another modification to the
ASV components yields the following parameters file,

2 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
2 ASV_1

0 ASV 2

2 ASV_ 3

for which the following results file is needed:

[ 5.0000000000e-01 5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]

Here, we need gradients for functidnandc2, but not forcl, presumably since this constraint is inactive.
A full Newton optimizer might well make the following request:

2 variables 1 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
7 ASV_1

for which the following results file (containing the objective function, its gradient vector, and its Hessian
matrix) is needed:

1.2500000000e-01 f

[ 5.0000000000e-01 5.0000000000e-01 ]

[[ 3.0000000000e+00 0.0000000000e+00 0.0000000000e+00
3.0000000000e+00 ]|
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Lastly, a more advanced example might have multiple types of variables present:

11 variables 3 functions
1.5000000000e+00 cdv_1
1.5000000000e+00 cdv_2
2 ddv_1
2 ddv_2
2 ddv_3
3.5000000000e+00 csv_1
3.5000000000e+00 csv_2
3.5000000000e+00 csv_3
3.5000000000e+00 csv_4
4 dsv_1
4 dsv_2
3 ASV 1
3 ASV_2
3 ASV_3

In this case, the required length of the gradient vectors depends upon the type of study being performed
(see Sectior.3). In an optimization problem, gradients are only needed with respect to the continuous

design variables, in which case the following response data would be appropgate € 2):

1.2500000000e-01 f

1.5000000000e+00 c1

1.7500000000e+00 c2

[ 5.0000000000e-01 5.0000000000e-01 ]
[ 3.0000000000e+00 -5.0000000000e-01 ]
[ 0.0000000000e+00 3.0000000000e+00 ]

In a parameter study, however, no distinction is drawn between different types of continuous variables, and

gradients would be needed with respect to all continuous variables:(= 6), e.9.:

1.2500000000e-01 f

1.5000000000e+00 c1

1.7500000000e+00 c2

[ 5.0000000000e-01 5.0000000000e-01 6.2500000000e+01
6.2500000000e+01 6.2500000000e+01 6.2500000000e+01 ]

[ 3.0000000000e+00 -5.0000000000e-01 0.0000000000e+00
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 ]

[ 0.0000000000e+00 3.0000000000e+00 0.0000000000e+00
0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 ]
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6.1 Overview

Theresponses specification in a DAKOTA input file specifies the types of data that can be returned
from an interface during DAKOTA's execution. The specification includes the number and type of response
functions (objective functions, nonlinear constraints, least squares terms, etc.) as well as availability of first
and second derivatives (gradient vectors and Hessian matrices) for these response functions.

This chapter will present a brief overview of the response data sets and their uses, as well as cover some
user issues relating to file formats and derivative vector and matrix sizing. For a detailed description

of responses section syntax and example specifications, refer to the responses commands chapter in the
DAKOTA Reference Manual 1[7].

6.1.1 Response function types

The types of response functions specified in the responses specification depend on the iterative technique
specified in the method specification:

e numuobjective  _functions ,numnonlinear _inequality  _constraints ,
numnonlinear _equality _constraints  : this is an optimization data set for use with opti-
mization methods from DOT, NPSOL, CONMIN, OPT++, and COLINY.

e numleast _squares _terms ,num.nonlinear _inequality  _constraints ,
numnonlinear _equality _constraints : thisis aleast squares data set for use with Gauss-
Newton and NLSSOL.

e numresponse _functions : this is a generic data set for use with uncertainty quantification
methods.

Certain general-purpose iterative techniques, such as parameter studies and design of experiments methods,
can be used with any of these data sets.

6.1.2 Gradient availability

Gradient availability for these response functions may be described by:

e no_gradients : gradient data is not needed.
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e numerical _gradients : gradient data is needed and will be computed by finite differences.

e analytic _gradients : gradientdatais needed and is available directly from the simulation code
(finite differencing is not required).

e mixed _gradients : some gradient information is available directly from the simulation whereas
the rest will have to be finite differenced.

The gradient specification also links back to the iterative method being employed. Gradient data is com-
monly needed when the iterative study involves gradient-based optimization, uncertainty quantification
with analytic reliability methods, or local sensitivity analysis.

6.1.3 Hessian availability

Hessian availability for the response functions has a subset of the gradient availability specifications:

e no_hessians : Hessian data is not needed.

e analytic _hessians : Hessian data is needed and is available directly from the simulation code.

Numerical and mixed Hessians calculations are not currently supported. The Hessian specification also
links back to the iterative method in use, and use of analytic Hessian data would commonly appear for
gradient-based optimization using full Newton methods or, perhaps, for local sensitivity analysis.

6.2 DAKOTA Results File Data Format

Application interfaces which employ system calls and forks to create separate simulation processes must
communicate with the simulation through the file system. This is accomplished through the reading and
writing of parameters and results files. DAKOTA uses its own format for this data input/output. For
the results file, only one format is supported (as compared to the two parameters file formats described
in Section4.6). Ordering of response functions is as listed in Secéidhl (e.g., objective functions or

least squares terms are first, followed by nonlinear inequality constraints, followed by nonlinear equality
constraints).

After completion of a simulation, DAKOTA expects to read a file containing response data for the current
set of parameters and corresponding to the current set of function requests in the active set vector. This
response data must be in the following format:

The first block of data is the function values that have been requested, followed by a block of requested
gradient data, followed by a block of requested Hessian data. Function data have no bracket delimiters and
one character tag per function candgionally supplied. These tags are not used by DAKOTA and are

only included as an optional field for consistency with the parameters file format and for backwards com-
patibility. The tags are rendered optional through DAKOTA's use of regular expression pattern matching

to detect whether an upcoming field is numerical data or a tag. If character tags are used, then they must
be separated from data by either white space or new line characters and there must not be any white space
embedded within a character tag (e.g., uggriablel " or “variable _1,” but not “variable 1 ).

Function gradient vectors are delimited with single bracketsi,..q-vector of doubles...]. Tags are not
used and must not be present. White space separating the brackets from the data is optional.

Function Hessian matrices are delimited with double bracketsd}, a4 x n4..q¢ matrix of doubles...]].

Data is listed by rows and can be run together or broken onto multiple lines for readability. Tags are not
used and must not be present. White space separating the brackets from the data is optional, although white
space must not appear between the double brackets.
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<double> <fn_tag >
<double> <fn_tag o>

<double> <fn_tag ,,>
[ <double> <double> .. <double> ]
[ <double> <double> .. <double> ]

[ <double> <double> .. <double> ]
[[ <double> <double> .. <double> 1]]
[[ <double> <double> .. <double> ]]

[[ <double> <double> .. <double> ]]

Figure 6.1: Results file data format.

If the amount of data in the file does not match the function request vector, DAKOTA will abort with a
response recovery format error message.

The format of the numeric fields may be floating point or scientific notation. In the latter case, acceptable
exponent characters arE™or “e. " A common problem when dealing with Fortran programs is that a C++
read of a numeric field usind> or “d” as the exponent (i.e., a double precision value from Fortran) may

fail or be truncated. In this case, thB™exponent characters must be replaced either through modifications

to the Fortran source or compiler flags or through a separate post-processing step (e.g., using the UNIX
sed utility).

6.3 Active Variables for Derivatives

An important question for proper management of both gradient and Hessian data is: if several different
types of variables are usedy which variables are response function derivatives neededPhat is, how

is ngrqq determined? The answer is that it depends on the iterative method in use. Methods determine
what subset, or view, of the variables data is active in the iteration. The set of variables that is active in the
iteration is the same set of variables for which derivatives are computed (see also 8&gtion

Derivatives are never needed with respect to any discrete variables (since these derivatives do not exist)
and the types of continuous variables for which derivatives are needed depend on the type of study being
performed. For optimization and least squares problems, response function derivatives are only needed
with respect to theontinuous design variablgsg,..a = n.4») Since this is the information used by the
optimizer in computing a search direction. Similarly, for nondeterministic analysis methods which use
gradient and/or Hessian information, function derivatives are only needed with respectutoctréain
variables(ng,qq = nuv). And lastly, parameter study methods which are cataloguing gradient and/or Hes-
sian information do not draw a distinction among continuous variables; therefore, function derivatives must
be supplied with respect @l continuous variablethat are specified;,qq = nedy + Nuw + Nesy). THIS IS
generally not as complicated as it sounds, since it is common for optimization and least squares problems
to only specify design variables and for nondeterministic analysis problems to only specify uncertain vari-
ables. DAKOTA allows for the specification of additional types of variables in these cases and DAKOTA
will map these additional variables through the interface, but since they will not be used in the internal
computations of the iterator, the derivatives of the function set with respect to the additional variables are
not needed.
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Chapter 7

Output from DAKOTA

7.1 Overview of Output Formats

Given an emphasis on complex numerical simulation codes that run on massively parallel supercomputers,
DAKOTA's output has been designed to provide a succinct, text-based reporting of the progress of the
iterations and function evaluations performed by an algorithm. In addition, DAKOTA provides a tabular
output format that is useful for data visualization with external tools and a basic graphical output capability
that is useful as a monitoring tool. Future work will include the development of a graphical user interface
with more extensive capabilities.

7.2 Standard Output

DAKOTA outputs basic information to “standard out” (i.e., the screen) for each function evaluation, con-
sisting of an evaluation number, parameter values, execution syntax, the active set vector, and the response
data set. To describe the standard output of DAKOTA, optimization of the “container” problem (see Chap-
ter 20 for problem formulation) is used as an example. The input file for this example is shown in Fig-
ure7.1 In this example, there is one equality constraint, and DAKOTA finite difference algorithm is used

to provide central difference numerical gradients to the NPSOL optimizer.
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# test file with a specific test. The is used to designate lines
strategy, \
single_method \
tabular_graphics_data
method, \
npsol_sqgp
variables, \
continuous_design = 2 \
cdv_descriptor 'H’ 'D’ \
cdv_initial_point 4.5 4.5 \
cdv_lower_bounds 0.0 0.0
interface, \
system \
analysis_driver = ’container’ \
parameters_file = ’container.in’ \
results_file ‘container.out’ \
file_tag
responses, \
num_objective_functions = 1 \
num_nonlinear_equality_constraints = 1 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_gradient_step_size = 0.001 \
no_hessians

Figure 7.1: DAKOTA input file for the “container” example problem.
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A partial listing of the output for the container optimization example follows:

Running MPI executable in serial mode.

Writing new restart file dakota.rst

Constructing Single Method Strategy...

methodName = npsol _sqp

gradientType = numerical

Numerical gradients using central differences

to be calculated by the dakota finite difference routine.
hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running npsol _sqp iterator.

NPSOL --- Version 5.0-2 Sept 1995

Begin Dakota derivative estimation routine

>>>>> |nitial map for analytic portion of response:

Begin Function Evaluation 1

Parameters for function evaluation 1:
4.5000000000e+00 H
4.5000000000e+00 D

(container container.in.1 container.out.1)
Active response data for function evaluation 1:
Active set vector = {11}

1.0713145108e+02 obj _fn
8.0444076396e+00 nin  _eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[1] + h:

Begin Function Evaluation 2

Parameters for function evaluation 2:
4.5045000000e+00 H
4.5000000000e+00 D

(container container.in.2 container.out.2)

Active response data for function evaluation 2:

Active set vector = {11}
1.0719761302e+02 obj _fn
8.1159770472e+00 nin  _eq_con_1
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>>>>> Dakota finite difference gradient evaluation for x[1] - h:

Begin Function Evaluation 3

Parameters for function evaluation 3:
4.4955000000e+00 H
4.5000000000e+00 D

(container container.in.3 container.out.3)
Active response data for function evaluation 3:
Active set vector = {11}

1.0706528914e+02 obj _fn
7.9728382320e+00 nin  _eq._con_1

>>>>> Dakota finite difference gradient evaluation for x[2] + h:

Begin Function Evaluation 4

Parameters for function evaluation 4:
4.5000000000e+00 H
4.5045000000e+00 D

(container container.in.4 container.out.4)
Active response data for function evaluation 4:
Active set vector = {11}

1.0727959301e+02 obj _fn
8.1876180243e+00 nin  _eq_con_1

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

Begin Function Evaluation 5

Parameters for function evaluation 5:
4.5000000000e+00 H
4.4955000000e+00 D

(container container.in.5 container.out.5)

Active response data for function evaluation 5:

Active set vector = {11}
1.0698339109e+02 obj _fn
7.9013403937e+00 nin  _eq_con_1

>>>>> Total response returned to iterator:
Active set vector = {33}

1.0713145108e+02 obj _fn
8.0444076396e+00 nin  _eq_con_1
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[ 1.4702653619e+01 3.2911324639e+01 ] obj _fn gradient
[ 1.5904312809e+01 3.1808625618e+01 ] nin _eq_con _1 gradient

Majr Minr Step Fun Merit function Norm gZ Violtn nZ Penalty Conv
0 1 0.0E+00 1 9.90366719E+01 1.6E+00 8.0E+00 1 0.0E+00 F FF

<<omission>>

>>>>> Dakota finite difference gradient evaluation for x[2] - h:

Begin Function Evaluation 40

Parameters for function evaluation 40:
4,9873894231e+00 H
4.0230575428e+00 D

(container container.in.40 container.out.40)

Active response data for function evaluation 40:

Active set vector = {11}
9.8301287596e+01 obj _fn
-1.2698647534e-01 nin _eg.con_1

>>>>> Total response returned to iterator:

Active set vector = {33}
9.8432498115e+01 obj _fn
-1.2072307876e-09 nin _eq.con_1

[ 1.3157517799e+01 3.2590159401e+01 ] obj _fn gradient

[ 1.2737124438e+01 3.1548877386e+01 ] nin _eq_con 1 gradient

7 1 1.0E+00 8 0.84324981E+01 7.9E-11 1.2E-09 1 14E+00 T TT
Exit NPSOL - Optimal solution found.
Final nonlinear objective value = 98.43250

NPSOL exits with INFORM code = 0 (see “Interpretation of output" section
in NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< lterator npsol _sqp completed.
<<<<< Function evaluation summary: 40 total (40 new, O duplicate)
<<<<< Best parameters =
4,9873894231e+00 H
4.0270846274e+00 D
<<<<< Best objective function =
9.8432498115e+01
<<<<< Best constraint values =
-1.2072307876e-09
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<<<<< Best data captured at function evaluation 36

<<<<< Single Method Strategy completed.

DAKOTA execution time in seconds:
Total CPU = 0.07 [parent = 0.07, child =1.38778e-17]
Total wall clock = 3.402

The first block of lines provide a report on the DAKOTA configuration and settings. The lines that fol-
low, down to the line Exit NPSOL - Optimal solution found ", contain information about

the function evaluations that have been requested by NPSOL and performed by DAKOTA. Evaluations 6
through 39 have been omitted from the listing for brevity.

Following the line Begin Function Evaluation 1 ", the initial values of the design variables

and the initial objective and constraint function evaluations are listed. The values of the design variables
are labeled with the tagd and D, respectively, according to the descriptors to these variables given in
the input file, Figure7.1 The values of the objective function and volume constraint are labeled with
the tagsobj _fn andnln _eq_con _1, respectively. Note that the initial design parameters are infeasible
since the equality constraint is violateg: (0). However, the numerical optimizer has the capability to

find a design that is both feasible and optimal for this example. Between the design variables and response
values, the content of the system call to the simulator is displayg@astainer container.in.1

container.out.1) ", with container  being the name of the simulator acghtainer.in.1 and
container.out.1 being the names of the parameters and results files, respectively.

Just preceding the output of the objective and constraint function values is theAatwe' set

vector = {1 1}". The active set vector indicates the types of data that are required from the simu-
lator for the objective and constraint functions, and valuesléfifidicate that the simulator must return
values for these functions (gradient and Hessian data are not required). For more information on the active
set vector, see Sectigh?.

Since finite difference gradients have been specified, DAKOTA computes their values by making ad-
ditional function evaluation requests to the simulator at perturbed parameter values. Examples of the
gradient-related function evaluations have been included in the sample output, beginning with the line that
reads >>>>> Dakota finite difference evaluation for x[1] + h: ”. The resulting

finite difference gradients are listed after function evaluation 5 beginning with theme>> Total

response returned to iterator: ”. Here, another active set vector is displayed in the DAKOTA
output file. The line Active set vector = { 3 3 }”indicates that the total response resulting
from the finite differencing contains function values and gradients.

The final lines of the DAKOTA output, beginning with the linec<<<< Iterator npsol _sgp
completed ”, summarize the results of the optimization study. The best values of the optimization param-
eters, objective function, and volume constraint are presented along with the function evaluation number
where they occurred, total function evaluation counts, and a timing summary. In the end, the objective func-
tion has been minimized and the equality constraint has been satisfied (driven to zero within the constraint
tolerance).

The DAKOTA results are intermixed with iteration information from the NPSOL library. The
lines with the heading Majr Minr Step Fun Merit function Norm gZ Violtn nZ

Penalty Conv " come from Fortran write statements within NPSOL. The output is mixed since both
DAKOTA and NPSOL are writing to the same standard output stream. The relative locations of these
output contributions can vary depending on the specifics of output buffering and flushing on a particular
platform and depending on whether or not the standard output is being redirected to a file. In some cases,
output from the optimization library may appear on each iteration (as in this example), and in other cases, it
may appear at the end of the DAKOTA output. Finally, a more detailed summary of the NPSOL iterations
is written to the Fortran device 9 file (e.§prt.9  orftn09 ).

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



7.3 Tabular Output Data

93

% eval_id H obj_fn nin_eqg_con_1
1 45 45 107.1314511 8.04440764
2 5.801246882 3.596476363 94.33737399  -4.591036449
3 5.197920021 3.923577478 97.77972141 -0.6780884643
4 4932877133 4.044776217 98.28930567 -0.1410680155
5 4.989328734 4.026133158 98.4270019 -0.005324669423
6 4.987494493 4.027041977 98.43249058 -7.305673455e-06
7 4.987391669 4.02708372 98.4324981 -1.981308363e-08
8 4.987389423 4.027084627 98.43249811 -1.207230788e-09

Figure 7.2: DAKOTA's tabular output file showing the iteration history of the “container” optimization
problem.

7.3 Tabular Output Data

DAKOTA has the capability to print the iteration history in tabular form to a file. The keyword
tabular _graphics _data needs to be included in the strategy specification (see Figdje The
primary intent of this capability is to facilitate the transfer of DAKOTA' iteration history data to an ex-
ternal mathematical analysis and/or graphics plotting package. Any evaluations from DAKOTA' internal
finite differencing are suppressed, which leads to better data visualizations. This suppression of lower level
data is consistent with the data that is sent to the graphics windows, as described in Bdctfdhis data
suppression is undesirable, Sectidh?2.3describes an approach where every function evaluation, even the
ones from finite differencing, can be saved to a file in tabular format.

The default file name for the tabular output datadsKota _tabular.dat " and the output from the
“container” optimization problem is shown in Figure2 This file contains the complete history of data
requests from NPSOL (8 requests map into a total of 40 function evaluations when including the central
finite differencing). The first column is the data request number, the second and third columns are the
design parameter values (labeled in the exampléfaarid “D"), the fourth column is the objective function
(labeled ‘©bj _fn "), and the fifth column is the nonlinear equality constraint (labeldd “.eq_con _1").

7.4 Graphics Output

Graphics capabilities are available for monitoring the progress of an iterative study. The graphics option
is invoked by adding thgraphics flag in the strategy specification of the DAKOTA input file (see
Figure 7.1). The graphics display the values of each response function (e.g., objective and constraint
functions) and each parameter for the function evaluations in the study. As for the tabular output described
in Section7.3, internal finite difference evaluations are suppressed in order to omit this clutter from the
graphics. Figur&.3shows the optimization iteration history for the container example.

If DAKOTA is executed on a remote machine, the DISPLAY variable in the user’s UNIX environragnt |

may need to be set to the local machine in order to display the graphics window. The scroll bars which are
located on each graph below the x-axis and next to the y-axis may be operated by dragging on the bars or
pressing the arrows, both of which result in expansion/contraction of the axis scale. Clicking on the options
button (“Opt”) allows the user to plot the values of the vertical axis using a logarithmic scale so long as all
of these values are greater than zero.

In addition to these two-dimensional iteration history plots, three-dimensional surface plots can be gen-
erated when using response surface methods in combination with the graphics keyword. This feature is
currently available only if there are two parameters in the problem. One common use of response surface
methods is in theurrogate _based _opt strategy (see SectidiB.7), for which a sample specification
follows:
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“ main =]

4 4

Figure 7.3: DAKOTA output for “container” problem showing history of an objective function, an equality
constraint, and two variables.

strategy, \

surrogate_based_opt \

graphics \

opt_method="NLP’ \

trust_region \
initial_size = 0.10 \
contraction_factor = 0.50 \
expansion_factor = 1.50

When DAKOTA is executed, a 3-D surface plot is automatically spawned (Figdrshows an example

from optimization of the Rosenbrock problem). The creation of the 3-D surface plot pauses the advance
of the optimization algorithm. To continue progress, click the right mouse button or hit return while the
mouse cursor is in the 3D graphics window.

The 3D graphics from the PLplot library have a dependency on external font files. If the 3D graphics fail
with a message similar to:

Cannot open library file: plstnd5.fnt
lib dir="<...some_path...>"

** PLPLOT ERROR ***

Unable to open font file

Program aborted

then the solution is to locate the font files that came with your DAKOTA installation and set the
$PLPLOT.LIB environment variable to point to them, e.g.:

setenv PLPLOT_LIB /home/<user_name>/Dakota/bin

7.5 Error Messages Output

A variety of error messages are printed by DAKOTA in the event that an error is detected in the input
specification. Some of the more common input errors, and the associated error messages, are described
below.

One common mistake is the omission of the continuation symfoivhen continuing the specifications

in a keyword block across multiple lines. When a continuation symbol is omitted, the keyword block is
truncated at the point of the omission (by the newline that is not escaped). If this truncation causes loss of
a required input, then an error message similar to the following will result:
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Figure 7.4: An example of the 3-D surface plotting that is available for surrogate-based optimization with
two design parameters.
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Error: Expected required identifier for keyword
‘responses’.

If the truncation results in omission of inputs that are optional, then the parser will still detect a syntax error
in the trailing specification that has been disconnected from its keyword block. This error will result in a

message similar to the following:

Parser detected syntax error at line 10. Unrecognized statement.
Did you forget to escape a newline?

Incorrectly spelled specifications will result in error messages of the form:
Parser detected syntax error at line 35. Unrecognized statement.

The input parser catches syntax errors, but not logic errors. The fact that certain input combinations are
erroneous must be detected after parsing, at object construction time. For example,dfadients
specification for a response data set is combined with selection of a gradient-based optimization method,
then this error must be detected during set-up of the optimizer (see last two lines of the text listing):

Running MPI executable in serial mode.

Writing new restart file dakota.rst

Constructing Single Method Strategy...
methodName = dot_mmfd

gradientType = none

hessianType = none

DOT Method = 1

DOT optimization type = minimize

DOT print control = 7

Error: gradientType = none is invalid with DOT.
Please select numerical, analytic, or mixed gradients.

Another common mistake involves a mismatch between the amount of data expected on a function evalua-
tion and the data returned by the user’s simulation code or driver. The available response data is specified
in the responses keyword block, and the subset of this data needed for a particular evaluation is managed
by the active set vector. For example, if DAKOTA expects function values and gradients to be returned
(as indicated by an active set vector containing 3's), but the user’s simulation code only returns function
values, then the following error message is generated:

At EOF: insufficient data for functionGradient 1
Unfortunately, descriptive error messages are not available for all possible failure modes of DAKOTA.

If you encounter core dumps, segmentation faults, or other failures, please report the problem to
dakota@sandia.gov
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Chapter 8

Parameter Study Capabillities

8.1 Overview

Parameter study methods in the DAKOTA toolkit involve the computation of response data sets at a selec-
tion of points in the parameter space. These response data sets are not linked to any specific interpretation,
so they may consist of any allowable specification from the responses keyword block, i.e., objective and
constraint functions, least squares terms and constraints, or generic response functions. This allows the use
of parameter studies in direct coordination with optimization, least squares, and uncertainty quantification
studies without significant modification to the input file. In addition, response data sets are not restricted
to function values only; gradients and Hessians of the response functions can also be catalogued by the
parameter study. This allows for several different approaches to “sensitivity analysis”: (1) the variation of
function values over parameter ranges provides a global assessment as to the sensitivity of the functions to
the parameters, (2) derivative information can be computed numerically, provided analytically by the simu-
lator, or both (mixed gradients) in directly determining local sensitivity information at a point in parameter
space, and (3) the global and local assessments can be combined to investigate the variation of derivative
guantities through the parameter space by computing sensitivity information at multiple points.

In addition to sensitivity analysis applications, parameter studies can be used for investigating nonsmooth-
ness in simulation response variations (so that models can be refined or finite difference step sizes can be
selected for computing numerical gradients), interrogating problem areas in the parameter space, or per-
forming simulation code verification (verifying simulation robustness) through parameter ranges of interest.
A parameter study can also be used in coordination with optimization methods as either a pre-processor (to
identify a good starting point) or a post-processor (for post-optimality analysis).

Parameter study methods will iterate any combinatiocaftinuous design, uncertain, and continuous
state variables into any set of responses (any function, gradient, and Hessian definition). Parameter studies
draw no distinction between the different types of continuous variables (design, uncertain, or state) and the
different types of response functions. They simply pass all of the variables defined in the variables speci-
fication into the interface, from which they expect to retrieve all of the responses defined in the responses
specification. As described in SectiérB, when gradient and/or Hessian information is being catalogued

in the parameter study, it is assumed that derivative components will be computed with respect to all of
thecontinuousvariables (continuous design, uncertain, and continuous state variables) specified. Note that
if you have a parameter study that you wish to perform on discrete variables, you need to redefine them
as continuous and perform the parameter study with a step length equdl tor an integer multiple
equivalent.

DAKOTA currently supports four types of parameter studies. Vector parameter studies compute response
data sets at selected intervals along a one-dimensional vector in parameter space. List parameter studies
compute response data sets at a list of points in parameter space, defined by the user. A centered parameter
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study computes multiple coordinate-based parameter studies, one per parameter, centered about the initial
parameter values. A multidimensional parameter study computes response data setsdonansional
hypergrid of points. More detail on these types of parameter studies is found in S&#¢hsough8.5

below.

8.1.1 Initial Values

The vector and centered parameter studies use the initial values of the variables from the variables keyword
block as the starting point and the central point of the parameter studies, respectively. In the case of design
variables, thenitial _point is used. In the case of state variables, ithtal _state isused. In

the case of uncertain variables, initial values for variables with normal, lognormal, uniform, loguniform,
weibull, and histogram probability distributions are the mean, mean, mid-point between bounds, mid-point
between bounds, beta parameter, and bin/point lower bound, respectively. The initial values for variables
with triangular, beta, gamma, gumbel, and frechet distributions are the mode, mean, alpha parameter/beta
parameter, mean, and mean, respectively. These starting values for design, uncertain, and state variables
are referenced repeatedly in the following sections using the identifier “Initial Values.”

8.2 Vector Parameter Study

The vector parameter study computes response data sets at selected intervals along a one-dimensional
vector in parameter space. This capability encompasses both single-coordinate parameter studies (to study
the effect of a single variable on a response set) as well as multiple coordinate vector studies (to investigate
the response variations along some n-dimensional vector; e.g., to investigate a search direction failure). In
addition to these uses, this capability is used recursively within the implementation of the multidimensional
parameter study.

DAKOTA's vector parameter study includes three possible specification formulations which are used in
conjunction with the Initial Values (see Secti®ri.]) to define the vector and steps of the parameter study:

final_point (vector of reals) and step_length (real)
final_point (vector of reals) and num_steps (integer)
step_vector (vector of reals) and num_steps (integer)

In each of these three cases, the Initial Values are used as the parameter study starting point and the spec-
ification selected from the three above defines the orientation and length of the vector as well as the in-
crements to be evaluated along the vector. Several examples starting from Initial Vaiu@s @f0,

1.0 areincluded below:

final _point = 1.0, 2.0, 1.0 andstep _length = 4

Parameters for function evaluation 1:
1.0000000000e+00 di1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.0000000000e+00 di1
1.4000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 3:
1.0000000000e+00 di1
1.8000000000e+00 d2
1.0000000000e+00 d3

final _point = 2.0, 2.0, 2.0 and step _length = 4 (note thatstep _length  defines
Cartesian distance of the step and the steps continue up to but not plasathe_point ):
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Parameters for function evaluation 1:
1.0000000000e+00 di1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.2309401077e+00 di
1.2309401077e+00 d2
1.2309401077e+00 d3

Parameters for function evaluation 3:
1.4618802154e+00 di
1.4618802154e+00 d2
1.4618802154e+00 d3

Parameters for function evaluation 4:
1.6928203230e+00 di1
1.6928203230e+00 d2
1.6928203230e+00 d3

Parameters for function evaluation 5:
1.9237604307e+00 di
1.9237604307e+00 d2
1.9237604307e+00 d3

final _point = 2.0, 2.0, 2.0 andnum.steps = 4 :

Parameters for function evaluation 1:
1.0000000000e+00 di1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.2500000000e+00 di1
1.2500000000e+00 d2
1.2500000000e+00 d3

Parameters for function evaluation 3:
1.5000000000e+00 di1
1.5000000000e+00 d2
1.5000000000e+00 d3

Parameters for function evaluation 4:
1.7500000000e+00 di1
1.7500000000e+00 d2
1.7500000000e+00 d3

Parameters for function evaluation 5:
2.0000000000e+00 d1
2.0000000000e+00 d2
2.0000000000e+00 d3

step _vector = .1, .1, .1 andnumsteps = 4 :

Parameters for function evaluation 1:
1.0000000000e+00 di1
1.0000000000e+00 d2
1.0000000000e+00 d3

Parameters for function evaluation 2:
1.1000000000e+00 di1
1.1000000000e+00 d2
1.1000000000e+00 d3

Parameters for function evaluation 3:
1.2000000000e+00 di1
1.2000000000e+00 d2
1.2000000000e+00 d3
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Parameters for function evaluation 4:
1.3000000000e+00 di1
1.3000000000e+00 d2
1.3000000000e+00 d3

Parameters for function evaluation 5:
1.4000000000e+00 di1
1.4000000000e+00 d2
1.4000000000e+00 d3

8.3 List Parameter Study

The list parameter study computes response data sets at selected points in parameter space. These points
are explicitly specified by the user and are not confined to lie on any line or surface. Thus, this parameter
study provides a general facility that supports the case where the desired set of points to evaluate does not
fit the prescribed structure of the vector, centered, or multidimensional parameter studies.

The user input consists oflst _of _points  specification which lists the requested parameter sets in
succession. The list parameter study simply performs a simulation for the first parameter set (the first
entries in the list), followed by a simulation for the next parameter set (thennextries), and so on, until

the list of points has been exhausted. Since the Initial Values will not be used, they need not be specified.

An example specification which would result in the same parameter sets as in the first example in Sec-
tion 8.2would be:

list_of points = 1.0, 1.0, 1.0, 1.0, 1.4, 1.0, 1.0, 1.8, 1.0

8.4 Centered Parameter Study

The centered parameter study executes multiple coordinate-based parameter studies, one per parameter,
centered about the specified Initial Values. This is useful for investigation of function contours in the
vicinity of a specific point. For example, after computing an optimum design, this capability could be used

for post-optimality analysis in verifying that the computed solution is actually at a minimum or constraint
boundary and in investigating the shape of this minimum or constraint boundary.

This method requirepercent _delta (real) anddeltas _per _variable (integer) specifications,
where the former specifies the size of the increments in percent and the latter specifies the number of
increments per variable in each of the plus and minus directions.

For example, with Initial Values of1.0, 1.0 , a percent delta of 10.0, and a
deltas _per _variable  of 2, the center point is evaluated followed by four function evaluations
(two minus deltas and two plus deltas) per variable:

Parameters for function evaluation 1:
1.0000000000e+00 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 2:
8.0000000000e-01 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 3:
9.0000000000e-01 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 4:
1.1000000000e+00 cdv_1
1.0000000000e+00 cdv_2

Parameters for function evaluation 5:
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d2

0 i > dl

Figure 8.1: Example centered parameter study.

1.2000000000e+00 cdv_1
1.0000000000e+00 cdv_2
Parameters for function evaluation 6:
1.0000000000e+00 cdv_1
8.0000000000e-01 cdv_2
Parameters for function evaluation 7:
1.0000000000e+00 cdv_1
9.0000000000e-01 cdv_2
Parameters for function evaluation 8:
1.0000000000e+00 cdv_1
1.1000000000e+00 cdv_2
Parameters for function evaluation 9:
1.0000000000e+00 cdv_1
1.2000000000e+00 cdv_2

This set of points in parameter space is depicted in Figute

If the Initial Values for the centered parameter study are very small or equal to zero, the study will substitute
a default step size. This is necessary due to the relative nature pétbent _delta specification.

8.5 Multidimensional Parameter Study

The multidimensional parameter study computes response data setsdediaensional hypergrid of

points. Each continuous variable is partitioned into equally spaced intervals between its upper and lower
bounds, and each combination of the values defined by these partitions is evaluated. The number of function
evaluations performed in the study is:

n

[[(partitions ~; +1) (8.1)

i=1
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3 partitions

0® @ g > dl

2 partitions
Figure 8.2: Example multidimensional parameter study

The patrtitions information is specified using thartitions specification, which provides an integer
list of the number of partitions for each continuous variable (pattitions ). Since the Initial Values
will not be used, they need not be specified.

In a two variable example problem witii € [0,2] andd2 € [0,3] (as defined by the upper and lower
bounds specified in the variables specification) and éttitions = 2,3 , the interval[0,2] is
divided into two equal-sized partitions and the intef@8] s divided into three equal-sized partitions.
This two-dimensional grid, shown in Figuge2,

would result in the following twelve function evaluations:

Parameters for function evaluation 1:
0.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 2:
1.0000000000e+00 di1
0.0000000000e+00 d2

Parameters for function evaluation 3:
2.0000000000e+00 d1
0.0000000000e+00 d2

Parameters for function evaluation 4:
0.0000000000e+00 d1
1.0000000000e+00 d2

Parameters for function evaluation 5:
1.0000000000e+00 di1
1.0000000000e+00 d2

Parameters for function evaluation 6:
2.0000000000e+00 d1
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Chapter 9

Design of Experiments and Sampling
Methods

9.1 Overview

DAKOTA contains three software packages that can be used for sampling and design of experiments: LHS
(Latin hypercube sampling), DDACE (distributed design and analysis for computer experiments), and FSU-
Dace (Florida State University’s Design and Analysis of Computer Experiments package)./IJHS4
general-purpose sampling package developed at Sandia that has been used by the DOE national labs for
several decades. DDACE is a more recent package for computer experiments that is under development by
staff at Sandia Labs5[l]. DDACE provides the capability for generating orthogonal arrays, Box-Behnken
designs, Central Composite designs, and random designs. DDACE is available under a GNU Lesser Gen-
eral Public License and is distributed with DAKOTA. The FSUDace package provides the following sam-
pling techniques: quasi-Monte Carlo sampling based on Halton or Hammersley sequences, and Centroidal
Voronoi Tessellation. FSUDace is available under a GNU Lesser General Public License and is distributed
with DAKOTA.

This chapter focuses on DDACE and FSUDace, with the primary goal of designing computer experiments.
Latin Hypercube Sampling, used in uncertainty quantification, is discussed in S&6tnThe differ-

ences between sampling used in design of experiments and sampling used in uncertainty quantification is
discussed in more detail in the following paragraphs. In brief, we consider design of experiment methods to
generate sets of uniform random variables on the intdéval. These sets are mapped to the lower/upper
bounds of the problem variables and then the response functions are evaluated at the sample input points
with the goal of characterizing the behavior of the response functions over the input parameter ranges of
interest. Uncertainty quantification via LHS sampling, in contrast, involves characterizing the uncertain
input variables with probability distributions such as normal, Weibull, triangular, etc., sampling from the
input distributions, and propagating the input uncertainties to obtain a cumulative distribution function on
the output. There is significant overlap between design of experiments and sampling. Often, both tech-
nigues can be used to obtain similar results about the behavior of the response functions and about the
relative importance of the input variables.

9.2 Design of Computer Experiments

Computer experiments are often different from physical experiments, such as those performed in agricul-
ture, manufacturing, or biology. In physical experiments, one often applies thetezatraentor factor
levelin an experiment several times to get an understanding of the variability of the output when that treat-
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ment is applied. For example, in an agricultural experiment, several fields (e.g., 8) may be subject to a
low level of fertilizer and the same number of fields may be subject to a high level of fertilizer to see if
the amount of fertilizer has a significant effect on crop output. In addition, one is often interested in the
variability of the output within a treatment group: is the variability of the crop yields in the low fertilizer
group much higher than that in the high fertilizer group, or not?

In physical experiments, the process we are trying to examine is stochastic: that is, the same treatment
may result in different outcomes. By contrast, in computer experiments, often we have a deterministic
code. If we run the code with a particular set of input parameters, the code will always produce the same
output. There certainly are stochastic codes, but the main focus of computer experimentation has been on
deterministic codes. Thus, in computer experiments we often do not have the need to do replicates (running
the code with the exact same input parameters several times to see differences in outputs). Instead, a major
concern in computer experiments is to create an experimental design which can sample a high-dimensional
space in a representative way with a minimum number of samples. The number of factors or parameters that
we wish to explore in computer experiments is usually much higher than physical experiments. In physical
experiments, one may be interesting in varying a few parameters, usually five or less, while in computer
experiments we often have dozens of parameters of interest. Choosing the levels of these parameters so
that the samples adequately explore the input space is a challenging problem. There are many experimental
designs and sampling methods which address the issue of adequate and representative sample selection.

There are many goals of running a computer experiment: one may want to explore the input domain
or the design space and get a better understanding of the range in the outputs for a particular domain.
Another objective is to determine which inputs have the most influence on the output, or how changes
in the inputs change the output. This is usually caBedsitivity analysis Another goal is to compare

the relative importance of model input uncertainties on the uncertainty in the model owtpcgstainty

analysis Yet another goal is to use the sampled inputs points and their corresponding output to create
a response surface approximatidor the computer code. The response surface approximation (e.g., a
polynomial regression model, a kriging model, a neural net) can then be used to emulate the computer code.
Constructing a response surface approximation is particularly important for applications where running a
computational model is extremely expensive: the computer model may take 10 or 20 hours to run on a high
performance machine, whereas the response surface model may only take a few seconds. Thus, one often
optimizes the response surface model or uses it within a framework such as surrogate-based optimization.
Response surface models are also valuable in cases where the gradient (first derivative) and/or Hessian
(second derivative) information required by optimization techniques are either not available, expensive to
compute, or inaccurate because the derivatives are poorly approximated or the function evaluation is itself
noisy due to roundoff errors. Furthermore, many optimization methods require a good initial point to ensure
fast convergence or to converge to good solutions (e.g. for problems with multiple local minima). Under
these circumstances, a good design of computer experiment framework coupled with response surface
approximations can offer great advantages.

In addition to the sensitivity analysis, uncertainty analysis, and response surface modeling mentioned
above, we also may want to dmcertainty quantificatioron a computer model. Uncertainty quantifi-
cation (UQ) refers to taking a particular set of distributions on the inputs, and propagating them through
the model to obtain a distribution on the outputs. For example, if input parameter A follows a normal with
mean 5 and variance 1, the computer produces a random draw from that distribution. If input parameter B
follows a weibull distribution with alpha = 0.5 and beta = 1, the computer produces a random draw from
that distribution. When all of the uncertain variables have samples drawn from their input distributions,
we run the model with the sampled values as inputs. We do this repeatedly to build up a distribution of
outputs. We can then use the cumulative distribution function of the output to ask questions such as: what
is the probability that the output is greater than 10? What is the 99th percentile of the output?

Note that sampling-based uncertainty quantification and design of computer experiments are very sim-
ilar. THERE IS SIGNIFICANT OVERLAP in the purpose and methods used for UQ and for DACE.
We have attempted to delineate the differences within DAKOTA as follows: we use the two methods,
DDACE and FSUDACE, primarily for design of experiments, where we are interested in understanding
the main effects of parameters and where we want to sample over an input domain to obtain values for
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constructing a response surface. We use the nondeterministic sampling mettredis sampling)  for
uncertainty quantification, where we are propagating specific input distributions and interested in obtain-
ing (for example) a cumulative distribution function on the output. If you have a problem where you have
no distributional information, we recommend starting with a design of experiments approach. Note that
DDACE and FSUDACE currently do NOT support distributional information: they take an upper and lower
bound for each uncertain input variable and sample within that. The uncertainty quantification methods in
nond _sampling (primarily Latin Hypercube sampling) offer the capability to sample from many dis-
tributional types. The distinction between UQ and DACE is somewhat arbitrary: both approaches often
can yield insight about important parameters and both can determine sample points for response surface
approximations.

9.3 DDACE Background

The DACE package includes both classical design of experiments methdmfd stochastic sampling
methods. The classical design of experiments methods in DDACE are central composite design (CCD) and
Box-Behnken (BB) sampling. A grid-based sampling method also is available. The stochastic methods are
orthogonal array sampling [], Monte Carlo (random) sampling, and Latin hypercube sampling. Note that
the DDACE version available through the DAKOTA interface only supports uniform distributions. DDACE
does not currently support enforcement of user-specified correlation structure among the variables.

The sampling methods in DDACE can be used alone or in conjunction with other methods. For example,
DDACE sampling can be used with both the surrogate-based optimization strategy and the optimization un-
der uncertainty strategy. See Figdi®9for an example of how the DDACE settings are used in DAKOTA.

More information on DDACE is available on the web kttp://csmr.ca.sandia.gov/projects/ddace

The following sections provide more detail about the sampling methods available for design of experiments
in DDACE.

9.3.1 Central Composite Design

A Box-Wilson Central Composite Design, commonly called a central composite design (CCD), contains
an embedded factorial or fractional factorial design with center points that is augmented with a group of
'star points’ that allow estimation of curvature. If the distance from the center of the design space to a
factorial point is+1 unit for each factor, the distance from the center of the design space to a star point is
+a with | « |[> 1. The precise value of depends on certain properties desired for the design and on the
number of factors involved. The CCD design is specified in DAKOTA with the method comudaaak

central _composite

As an example, with a two input variables or factors, each having two levels, the factorial design is shown
in Table 9.1.

Table 9.1: Simple Factorial Design

Input 1 | Input 2

-1 -1
-1 +1
+1 -1
+1 +1

With a CCD, the design above would be augmented with the following pointsif..3:
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Table 9.2: Additional Points to make the factorial design a CCD

Input 1 | Input 2

0 +1.3
0 -1.3
1.3 0
-1.3 0
0 0

These points define a circle around the original factorial design.

Note that the number of samples points specified in a G&Mples , is a function of the number of
variables in the problem:

samples = 1+ 2x NumVar + gNumVar

9.3.2 Box-Behnken Design

The Box-Behnken design is similar to a Central Composite design, with some differences. The Box-
Behnken design is a quadratic design in that it does not contain an embedded factorial or fractional factorial
design. In this design the treatment combinations are at the midpoints of edges of the process space and
at the center, as compared with CCD designs where the extra points are placed at 'star points’ on a circle
outside of the process space. Box-Behken designs are rotatable (or near rotatable) and require 3 levels of
each factor. The designs have limited capability for orthogonal blocking compared to the central composite
designs. Box-Behnken requires fewer runs than CCD for 3 factors, but this advantage goes away as the
number of factors increases. The Box-Behnken design is specified in DAKOTA with the method command
ddace box _behnken .

Note that the number of samples points specified in a Box-Behnken deaigples , is a function of the
number of variables in the problem:

samples = 1+ 4 %« NumVar + (NumVar — 1)/2

9.3.3 Orthogonal Array Designs

Orthogonal array (OA) sampling was independently considered by Owen and Tang. An orthogonal array
sample can be described as an 4-tiplen, s, ), wherem is the number of sample pointsjs the number

of input variabless is the number of symbols, andis the strength of the orthogonal array. The number

of sample pointsy, must be a multiple of the number of symbalsThe number of symbols refers to the
number of levels per input variable. The strength refers to the number of columns where we are guaranteed
to see all the possibilities an equal number of times.

For example, Table 9.3 shows an orthogonal array of strength:2 fo8, with 7 variables:

If one picks any two columns, say the first and the third, note that each of the four possible rows we might
see there, 00,01, 10, 11, appears exactly the same number of times, twice in this case.

DDACE creates orthogonal arrays of strength 2. Further, the OAs generated by DDACE do not treat the
factor levels as one fixed value (0 or 1 in the above example). Instead, once a level for a variable is
determined in the array, DDACE samples a random variable from within that level. The orthogonal array
design is specified in DAKOTA with the method commaidhce oas .
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Table 9.3: Orthogonal Array for Seven Variables

Input 1 | Input 2 | Input3 | Input4 [ Input5 [ Input 6 | Input 7

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
0 1 1 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

The orthogonal array method in DDACE is the only method that allows for the calculation of main effects,
specified with the commanaain _effects . Main effects is a sensitivity analysis method which identi-

fies the input variables that have the most influence on the output. In main effects, the idea is to look at the
mean of the response function when variable A (for example) is at level 1 vs. when variable A is at level
2 or level 3. If these mean responses of the output are statistically significantly different at different levels
of variable A, this is an indication that variable A has a significant effect on the response. The orthogo-
nality of the columns is critical in performing main effects analysis, since the column orthogonality means
that the effects of the other variables 'cancel out’ when looking at the overall effect from one variable at
its different levels. There are ways of developing orthogonal arrays to calculate higher order interactions,
such as two-way interactions (what is the influence of Variable A * Variable B on the output?), but this
is not available in DDACE currently. At present, one way interactions are supported in the calculation of
orthogonal array main effects within DDACE.

9.3.4 Grid Design

In a grid design, a grid is placed over the input variable space. This is very similar to a multi-dimensional
parameter study where the samples are taken over a set of partitions on each variable (se®.Section
The main difference is that in grid sampling, a small random perturbation is added to each sample value
so that the grid points are not on a perfect grid. This is done to help capture certain features in the output
such as periodic functions. A purely structured grid, with the samples exactly on the grid points, has the
disadvantage of not being able to capture important features such as periodic functions with relatively high
frequency (due to aliasing). Adding a random perturbation to the grid samples helps remedy this problem.

Another disadvantage with grid sampling is that the number of sample points required depends exponen-
tially on the input dimensions. In grid sampling, the number of samples is the number of symbols (grid
partitions) raised to the number of variables. For example, if there are 2 variables, each with 5 partitions,
the number of samples would b&. In this case, doubling the number of variables squares the sample size.
The grid design is specified in DAKOTA with the method commaddce grid

9.3.5 Monte Carlo Design

Monte Carlo designs simply involve pure Monte-Carlo random sampling from uniform distributions be-
tween the lower and upper bounds on each of the input variables. Monte Carlo designs, spedidckby
random , are a way to generate a set of random samples over an input domain.
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9.3.6 LHS Design

DDACE offers the capability to generate Latin Hypercube designs. For more information on Latin Hy-
percube sampling, see Sectib®.2 Note that the version of LHS in DDACE generates uniform samples
(uniform between the variable bounds). The version of LHS offered with nondeterministic sampling can
generate LHS samples according to a number of distribution types, including normal, lognormal, weibull,
beta, etc. To specify the DDACE version of LHS, use the method comuidack |hs

9.4 FSUDace Background

The FSUDace package includes quasi-Monte Carlo sampling methods (Halton and Hammersley sequences)
and Centroidal Voronoi Tesselation sampling. All three methods generate sets of uniform random variables
on the intervall0, 1]. The guasi-Monte Carlo and CVT methods are designed with the goal of low dis-
crepancy. Discrepancy refers to the nonuniformity of the sample points within the unit hypercube. Low
discrepancy sequences tend to cover the unit hypercube reasonably uniformly. Quasi-Monte Carlo methods
produce low discrepancy sequences, especially if one is interested in the uniformity of projections of the
point sets onto lower dimensional faces of the hypercube (usually 1-D: how well do the marginal distri-
butions approximate a uniform?) CVT does very well volumetrically: it spaces the points fairly equally
throughout the space, so that the points cover the region and are isotropically distributed with no direc-
tional bias in the point placement. There are various measures of volumetric uniformity which take into
account the distances between pairs of points, regularity measures, etc. Note that CVT does not produce
low-discrepancy sequences in lower dimensions, however: the lower-dimension (such as 1-D) projections
of CVT can have high discrepancy.

The quasi-Monte Carlo sequences of Halton and Hammersley are deterministic sequences determined by a
set of prime bases. A Halton design is specified in DAKOTA with the method comifisandjuasi _mc

halton , and the Hammersley design is specified with the comniand.quasi _-mc hammersley .

For more details about the input specification, see the Reference Manual. CVT points tend to arrange
themselves in a pattern of cells that are roughly the same shape. To produce CVT points, an almost
arbitrary set of initial points is chosen, and then an internal set of iterations is carried out. These iterations
repeatedly replace the current set of sample points by an estimate of the centroids of the corresponding
Voronoi subregions{3]. A CVT design is specified in DAKOTA with the method commaiisd _cvt .

The methods in FSUDace are useful for design of experiments because they provide good coverage of the
input space, thus allowing global sensitivity analysis.

9.5 Sensitivity Analysis

Like parameter studies (see Chafgrthe DACE techniques are useful for characterizing the behavior of
the response functions of interest through the parameter ranges of interest. In addition to direct interroga-
tion and visualization of the sampling results, a number of techniques have been developed for assessing
the parameters which are most influential in the observed variability in the response functions. One ex-
ample of this is the well-known technique of scatter plots, in which the set of samples is projected down
and plotted against one parameter dimension, for each parameter in turn. Scatter plots with a uniformly
distributed cloud of points indicate parameters with little influence on the results, whereas scatter plots
with a defined shape to the cloud indicate parameters which are more significant. Related techniques in-
clude analysis of variance (ANOVARJ] and main effects analysis, in which the parameters which have
the greatest influence on the results are identified from sampling results. Scatter plots and ANOVA may
be accessed through import of DAKOTA tabular results (see Se¢t®)ninto external statistical analysis
programs such as S-plus, Minitab, etc.

Running any of the design of experiments or sampling methods allows the user to save the results in a
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tabular data file, which then can be read into a spreadsheet or statistical package for further analysis. In
addition, we have provided some functions to help determine the most important variables.

We take the definition of uncertainty analysis from]} "The study of how uncertainty in the output of a
model can be apportioned to different sources of uncertainty in the model input.”

As a default, DAKOTA provides correlation analyses when running LHS. Correlation tables are printed
with the simple, partial, and rank correlations between inputs and outputs. These can be useful to get a
quick sense of how correlated the inputs are to each other, and how correlated various outputs are to inputs.
The correlation analyses are explained further in Chalfiet

We also have the capability to calculate sensitivity indices through Variance-based Decomposition (VBD).
Variance-based decomposition is a way of using sets of samples to understand how the variance of the
output behaves, with respect to each input variable. A larger value of the sensitivity iBd¢S)

in the DAKOTA output), means that the uncertainty in the input variables a larger effect on the
variance of the output. More details on the calculations and interpretation of the sensitivity indices
can be found in{4]. VBD can be specified for any of the sampling methods using the command
variance _based _decomposition . Note that VBD is extremely computationally intensive since
replicated sets of sample values are evaluated. If the user specified a number of sAimplesa num-

ber of nondeterministic variables/, variance-based decomposition requires the evaluation(éf + 2)

samples. To obtain sensitivity indices that are reasonably accurate, we recommekdttimnhumber of
samples, be at least one hundred and preferably several hundred or thousands. Because of the computa-
tional cost, Variance-based decomposition is turned off as a default.
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Chapter 10

Nondeterministic Analysis and
Uncertainty Quantification

10.1 Overview

DAKOTA contains the DAKOTA/UQ software package for performing nondeterministic analysis. The
DAKOTA/UQ package is tightly-woven into the core DAKOTA software and is not available separately.
The methods in DAKOTA/UQ have been developed by a group of researchers at Sandia Labs, in conjunc-
tion with collaborators in academiaq], [30]. In addition, future extensions to the DDACE package will
make it applicable to general UQ problems, which will augment the DAKOTA/UQ capabilities.

Uncertainty quantification methods (also referred to as nondeterministic analysis methods) in the
DAKOTA/UQ system involve the computation of probabilistic information about response functions based
on sets of simulations taken from the specified probability distributions for uncertain parameters. That
is, these methods perform a forward uncertainty propagation in which probability information for input
parameters is mapped to probability information for output response functionsmThactions in the
DAKOTA response data set are interpretedrageneral response functions by the DAKOTA/UQ methods
(with no specific interpretation of the functions as for optimization and least squares).

Within the variables specification, uncertain variable descriptions are employed to define the parameter
probability distributions (see Sectigh3). The distribution types include: normal (Gaussian), lognor-

mal, uniform, loguniform, weibull, triangular, beta, gamma, gumbel, frechet, interval, and user-defined
histogram. All uncertain variables are treated as continuous variables in DAKOTA. Thus, when gradient
and/or Hessian information is used in an uncertainty assessment, it is assumed that derivative components
will be computed with respect to thencertain variables

10.2 Sampling Methods

Sampling techniques are selected usingrtbed _sampling method selection. This method generates

sets of samples according to the probability distributions of the uncertain variables and maps them into cor-
responding sets of response functions, where the number of samples is specifieddyphes integer
specification. Means, standard deviations, coefficients of variance (COVs), and 95% confidence intervals
are computed for the response functions. Probabilities of occurrence are assessed by comparing the re-
sponse results against a set of user-supplied thresholds framsipense _thresholds  specification.

Currently, traditional Monte Carlo (MC) and Latin hypercube sampling (LHS) are supported by DAKOTA
and are chosen by specifyisgmple _type asrandom orlhs . In Monte Carlo sampling, the samples



114

Nondeterministic Analysis and Uncertainty Quantification

are selected randomly according to the user-specified probability distributions. Latin hypercube sampling
is a stratified sampling technique for which the range of each uncertain variable is divid&d isegments

of equal probability, wheréV, is the number of samples requested. The relative lengths of the segments
are determined by the nature of the specified probability distribution (e.g., uniform has segments of equal
width, normal has small segments near the mean and larger segments in the tails). For each of the uncertain
variables, a sample is selected randomly from each of these equal probability segmentsV TYases

for each of the individual parameters are then combined in a shuffling operation to create a\get of
parameter vectors with a specified correlation structure. A feature of the resulting sample sehisrat

row and column in the hypercube of partitions has exactly one sar8phee the total number of samples

is exactly equal to the number of partitions used for each uncertain variable, an arbitrary number of desired
samples is easily accommodated (as compared to less flexible approaches in which the total number of
samples is a product or exponential function of the number of intervals for each variable, i.e., many classical
design of experiments methods).

Advantages of sampling-based methods include their relatively simple implementation and their indepen-
dence from the scientific disciplines involved in the analysis. The main drawback of these techniques is
the large number of function evaluations needed to generate converged statistics, which can render such an
analysis computationally very expensive, if not intractable, for real-world engineering applications. LHS
techniques, in general, require fewer samples than traditional Monte Carlo for the same accuracy in statis-
tics, but they still can be prohibitively expensive. For further information on the method and its relationship
to other sampling techniques, one is referred to the works by McKay, et%l.Ilfnan and Shortencarier

[45], and Helton and Davig/[3]. Note that under certain monotonicity conditions associated with the func-
tion to be sampled, Latin hypercube sampling provides a more accurate estimate of the mean value than
does random sampling. That is, given an equal number of samples, the LHS estimate of the mean will have
less variance than the mean value obtained through random sampling.

Figure10.1demonstrates Latin hypercube sampling on a two-variable parameter space. Here, the range
of both parametersy; andxo, is [0,1]. Also, for this example botk; andx, have uniform statistical
distributions. For Latin hypercube sampling, the range of each parameter is divided'loits” of equal
probability. For parameters with uniform distributions, this corresponds to partitions of equal size. For
n design parameters, this partitioning yields a totap®fbins in the parameter space. Nextsamples

are randomly selected in the parameter space, with the following restrictions: (a) each sample is randomly
placed inside a bin, and (b) for all one-dimensional projections opthamples and bins, there will be

one and only one sample in each bin. In a two-dimensional example such as that shown irlBigure
these LHS rules guarantee that only one bin can be selected in each row and colupn: Fathere are

four partitions in bothr; andz,. This gives a total of 16 bins, of which four will be chosen according to

the criteria described above. Note that there is more than one possible arrangement of bins that meet the
LHS criteria. The dots in Figur#0.1represent the four sample sites in this example, where each sample

is randomly located in its bin. There is no restriction on the number of bins in the range of each parameter,
however, all parameters must have the same number of bins.

The actual algorithm for generating Latin hypercube samples is more complex than indicated by the de-
scription given above. For example, the Latin hypercube sampling method implemented in the LHS

code [71] takes into account a user-specified correlation structure when selecting the sample sites. For
more details on the implementation of the LHS algorithm, see Referérite [

10.2.1 Uncertainty Quantification Example using Sampling Methods

The following response functions from the Textbook example problem (see Cl2éjter
f=(z1 ="+ (z2 - 1)

9 1
Cl =27 — =X2
L)
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0 X 1

Figure 10.1: An example of Latin hypercube sampling with four bins in design parametansiz,. The
dots are the sample sites.

2
Cy = Ty — 51‘1

will be used to demonstrate the application of sampling methods for uncertainty quantification where it
is assumed that; andx, are uniform uncertain variables on the interf@l1]. The DAKOTA input

file for this problem is shown in Figur£0.2 The number of samples to perform is controlled with the
samples specification, the type of sampling algorithm to use is controlled witlsémaple _type spec-
ification, the threshold values used for computing statistics on the response functions is specified with the
response _thresholds input, and the seed specification controls the sequence of the pseudo-random
numbers generated by the sampling algorithms. The input samples generated are shown itOR3dore

the case whersamples =5 andsamples = 10 for bothrandom (o) andlhs (4) sample types.

Latin hypercube sampling ensures full coverage of the range of the input variables, which is often a prob-
lem with Monte Carlo sampling when the number of samples is small. In the casergfles = 5

poor stratification is evident im; as four out of the five Monte Carlo samples are clustered in the range
0.35 < z1 < 0.55, and the regions; < 0.3 and0.6 < z; < 0.9 are completely missed. For the case
wheresamples = 10 , some clustering in the Monte Carlo samples is again evidentdvitamples in

the ranged.5 < x; < 0.55. In both cases, the stratification with LHS is superior. The response func-
tion statistics returned by DAKOTA are shown in Figur@.4 The first two blocks of output specify the

mean responses, the standard deviations, and confidence intervals for the means of the response functions.
The last section of the output specifies probability levels (points along a CDF or CCDF) for a response
function at various response levels. Note that DAKOTA now allows the user to specify which format they
would like to see the output, CDF or CCDF. Also, the user can specify response levels and get correspond-
ing probabilities as output or specify various probability levels and get response levels as output. In this
example distribution cumulative was specified, andesponse _levels were set to obtain
probabilities.

In addition to obtaining statistical summary information of the type shown in Fitfue the results of LHS
sampling now include correlations. Four types of correlations are returned in the output: simple and partial
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method, \
nond_sampling, \
samples = 10 seed = 98765 \
response_levels = 0.1 0.2 0.6 \
0.1 0.2 0.6 \
0.1 0.2 0.6 \
# sample_type random
sample_type lhs \

distribution cumulative

variables, \
# Two uncertain uniform random variables on the interval [0,1] \
uniform_uncertain = 2 \
uuv_dist_lower_bounds = 0 O
uuv_dist_upper_bounds 1 1
uuv_descriptor

1’ "’

interface, \
application system asynch evaluation_concurrency = 5 \
analysis_driver = 'text_book’

responses, \
num_response_functions = 3 \
no_gradients \
no_hessians

Figure 10.2: DAKOTA input file for UQ example using LHS sampling.
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Figure 10.3: Distribution of input sample points for randafngnd lhs ¢) sampling forsamples=5 and

10.

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



10.2 Sampling Methods

117

response_fnl: Mean
Coeff. of Variation =
response_fn2: Mean

response_fn3: Mean

response_fnl: Mean
response_fn2: Mean
response_fn3: Mean
Probabilities for each

Response Level

Statistics based on 10 observations:

Moments for each response function:

Coeff. of Variation = 4.63726e+00

= 3.83840e-01 Std. Dev. = 4.02815e-01
1.04944e+00

= 7.47987e-02 Std. Dev. = 3.46861e-01
= 7.09462e-02 Std. Dev. = 3.41532e-01

Coeff. of Variation = 4.81397e+00

95% confidence intervals for each response function:

( 1.34172e-01, 6.33507e-01 )
( -1.40188e-01, 2.89785e-01 )
( -1.40738e-01, 2.82630e-01 )

response function:

Cumulative Distribution Function (CDF) for response_fnl:

Probability Level Reliability Index

1.0000000000e-01
2.0000000000e-01
6.0000000000e-01

Response Level

3.0000000000e-01
5.0000000000e-01
7.0000000000e-01

Cumulative Distribution Function (CDF) for response_fn2:

Probability Level Reliability Index

1.0000000000e-01
2.0000000000e-01
6.0000000000e-01

Response Level

5.0000000000e-01
7.0000000000e-01
9.0000000000e-01

Cumulative Distribution Function (CDF) for response_fn3:

Probability Level Reliability Index

1.0000000000e-01
2.0000000000e-01
6.0000000000e-01

6.0000000000e-01
6.0000000000e-01
9.0000000000e-01

Figure 10.4: DAKOTA response function statistics from UQ sampling example.
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Simple Correlation Matrix between input and output:
x1 x2 response_fnl response_fn2 response_fn3
x1 1.00000e-00
X2 -7.22482e-02 1.00000e+00
response_fnl -7.04965e-01 -6.27351e-01 1.00000e+00
response_fn2 8.61628e-01 -5.31298e-01 -2.60486e-01 1.00000e+00
response_fn3 -5.83075e-01 8.33989e-01 -1.23374e-01 -8.92771e-01 1.00000e+00

Partial Correlation Matrix between input and output:
response_fnl response_fn2 response_fn3
x1 -9.65994e-01 9.74285e-01 -9.49997e-01
x2 -9.58854e-01 -9.26578e-01 9.77252e-01

Simple Rank Correlation Matrix between input and output:
x1 x2 response_fnl response_fn2 response_fn3
x1 1.00000e+00
X2 -6.66667e-02 1.00000e+00
response_fnl -6.60606e-01 -5.27273e-01 1.00000e+00
response_fn2 8.18182e-01 -6.00000e-01 -2.36364e-01 1.00000e+00
response_fn3 -6.24242e-01 7.93939e-01 -5.45455e-02 -9.27273e-01 1.00000e+00

Partial Rank Correlation Matrix between input and output:
response_fnl response_fn2 response_fn3

x1 -8.20657e-01 9.74896e-01 -9.41760e-01

X2 -7.62704e-01 -9.50799e-01 9.65145e-01

Figure 10.5: Correlation results using LHS Sampling.

“raw” correlations, and simple and partial “rank” correlations. The raw correlations refer to correlations
performed on the actual input and output data. Rank correlations refer to correlations performed on the
ranks of the data. Ranks are obtained by replacing the actual data by the ranked values, which are obtained
by ordering the data in ascending order. For example, the smallest value in a set of input samples would be
given arank 1, the next smallest value a rank 2, etc. Rank correlations are useful when some of the inputs
and outputs differ greatly in magnitude: then it is easier to compare if the smallest ranked input sample is
correlated with the smallest ranked output, for example.

Correlations are always calculated between two sets of sample data. One can calculate correlation co-
efficients between two input variables, between an input and an output variable (probably the most use-
ful), or between two output variables. The simple correlation coefficients presented in the output ta-
bles are Pearson’s correlation coefficient, which is defined for two variabdesly as: Corr(z,y) =

Zi(m%_if)(yi—g)
V2, @02 ) i)
correlation coefficient between two variables measures their correlation while adjusting for the effects of
the other variables. For example, say one has a problem with two inputs and one output; and the two
inputs are highly correlated. Then the correlation of the second input and the output may be very low after
accounting for the effect of the first input. The rank correlations in DAKOTA are obtained using Spear-
man’s rank correlation. Spearman'’s rank is the same as the Pearson correlation coefficient except that it is
calculated on the rank data.

Partial correlation coefficients are similar to simple correlations, but a partial

Figure10.5shows an example of the correlation output provided in DAKOTA. This example is the output
from the input file in Figuréd.0.2Note that these correlations are presently only available when one specifies
Ihs as the sampling method under nagaimpling. Also note that the simple and partial correlations should

be similar in most cases (in terms of values of correlation coefficients). This is because we use a default
“restricted pairing” method in the LHS routine which forces near-zero correlation amongst the inputs.
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Finally, note that the LHS package can be used in design of experiments mode by including the
all _variables flag in the method specification section of the DAKOTA input file. Then, instead of
iterating on only the uncertain variables, the LHS package will sample on all of the continuous variables,
where continuous design and continuous state variables are treated as having uniform probability distribu-
tions within their upper and lower bounds and any uncertain variables are sampled within their specified
probability distributions.

10.3 Analytical Reliability Methods

Analytical reliability methods provide an alternative approach to uncertainty quantification which can be
less computationally demanding than sampling techniques. Reliability methods for uncertainty quantifi-
cation are based on probabilistic approaches that compute approximate response function distribution
statistics based on specified uncertain variable distributions. These response statistics include response
mean, response standard deviation, and cumulative or complementary cumulative distribution functions
(CDF/CCDF). These methods are often more efficient at computing statistics in the tails of the response
distributions (events with low probability) than sampling based approaches since the number of samples
required to resolve a low probability can be prohibitive.

The methods all answer the fundamental question: “Given a set of uncertain input varlaplesd a
scalar response functiog, what is the probability that the response function is below a certain leveél,
Formally this can be written aB[g(X) < z] = F,(z) whereF,(z) is the cumulative distribution function
(CDF) of the uncertain respongé€X) over a set of response levels.

This probability calculation involves a multi-dimensional integral over an irregularly shaped domain of
interest,D, whereg(X) < z as displayed in Figur&0.6 for the case of two variables. The reliabil-

ity methods all involve the transformation of the user-specified uncertain varidX|esjth probability
density functionp(z1, z2), which can be non-normal and correlated, to a space of independent Gaussian
random variablesy, possessing a mean value of zero and unit variance (i.e., standard normal variables).
The region of interestD, is also mapped to the transformed space to yiBld,, whereg(U) < z as

shown in Figurel0.7. The Nataf transformationl}], which is identical to the Rosenblatt transforma-

tion [54] in the case of independent random variables, is used in DAKOTA to accomplish this mapping.
This transformation is performed to make the probability calculation more tractable. In the transformed
space, probability contours are circular in nature as shown in Fitfuféunlike in the original uncertain
variable space, Figurg0.6 Also, the multi-dimensional integrals can be approximated by simple func-
tions of a single parametes, called the reliability index5 is the minimum Euclidean distance from the
origin in the transformed space to the response surface. This point is also known as the most probable point
(MPP) of failure. Note, however, the methodology is equally applicable for generic functions, not simply
those corresponding to failure criteria; this nomenclature is due to the origin of these methods within the
disciplines of structural safety and reliability.

The determination of the MPP can be posed as a constrained optimization problem, where the objective
function to be minimized is the distance from the origin to a surface in the unit-normal space. This surface
defines an equality constraint for the minimization problem and the exact form of the constraint depends
on the particular reliability method in use. The mean-value method (MV), advanced mean-value meth-
ods (AMV/AMV+) [5€], and first order reliability method (FORM) are implemented in DAKOTA. These
methods are explained below. A more thorough discussion of the methods can be found in the recent text
by Haldar and Mahadevar [].

The Mean Value method (MV) is the simplest, least expensive reliability method in that it estimates the
response means, response standard deviations, and the CDFs/CCDFs from a single evaluation of the re-
sponse functions and gradients at the uncertain variable means. This approximation can have acceptable
accuracy when the response functions are nearly linear and their distributions are approximately Gaussian,
but can have very poor accuracy in other situations.

The expression for the approximate response mgampproximate response standard deviatign re-
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4 -
gx) = z /
3 £
e

X

PlgX)<z] = ij(xl.qudx = Pl(xe D)]
x=D

Figure 10.6: Graphical depiction of calculation of cumulative distribution function in the original uncertain
variable space.

u2

| u P(Xe D) = P(UE Dy)=£(P)

Figure 10.7: Graphical depiction of integration for the calculation of cumulative distribution function in
the transformed uncertain variable space.
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sponse target to approximate probability/reliability level mapping: (p, 3), and probability/reliability
target to approximate response level mapping — z, are:

g = 9(fta)

2= lg — 0gBcpr, %2 = g + 048ccpF

wherex are the uncertain values in the space of the original uncertain variables (“x-spaceg)xand

the limit state function is the limit state function (the response function for which probability-response
level pairs are needed). The CDF reliability indéxp r, the CCDF reliability index3ccpr, the CDF
probabilityp(g < z), and the CCDF probability(g > z) are related to one another through:

p(g < 2) = ®(—Pcpr)

p(g > z) = ®(—Bcepr)

Bepr = -2 H(p(g < 2))

Beepr = =7 (p(g > 2))

Bcpr = —Bcepr

All reliability methods except the MV method described above solve a nonlinear optimization problem to
compute a most probable point (MPP) and then integrate about this point (rather than the uncertain variable
means as in MV) to compute probabilities. The MPP search is performed in transformed standard normal
space (“u-space”) since it simplifies the probability integration: the distance of the MPP from the origin has
the meaning of the number of standard deviations separating the mean response from a particular response
threshold. The forward reliability analysis algorithm of computing CDF/CCDF probabilities for specified
response levels is called the reliability index approach (RIA), and the inverse reliability analysis algorithm
of computing response levels for specified CDF/CCDF probability levels is called the performance measure
approach (PMA). The differences between the RIA and PMA formulations appear in the objective function
and equality constraint formulations used in the MPP searches. For RIA, the MPP search for achieving the
specified response levelis formulated as:

minimize u” u subject toG(u) = z

and for PMA, the MPP search for achieving the specified reliability/probability level péseprmulated
as
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minimize G(u) subject tou”u = °

whereu is a vector centered at the origin in u-spagex) == G(u) by definition, and defines the
CDF/CCDF probabilities. The sign ¢fis defined by:

G(u* > G(0); Bepr <0, Beepr > 0

G(u* < G(0); Bepr > 0, Bocpr <0

whereG(O) is the median limit state response computed at the origin in u-space (w(lgerez) = p(g >
z) =0.5andB8cpr = feccpr = 0.

There are a variety of algorithmic variations that can be explored within RIA/PMA reliability analysis.
First, one may select among several different linearization approaches for the limit state function that can
be used to reduce computational expense during the MPP searches. Options include:

1. A single linearization per response/probability level in x-space centered at the uncertain variable means
(commonly known as the Advanced Mean Value (AMV) method).

9(®) = g(pa) + Vag(pa) " (z = p1a)

2. The u-space AMV method. This is the same as AMV, except that the linearization is performed in
u-space. This option has been termed the u-space AMV method.

G(u) =2 g(pa) + Vaug(pa) ™ (u — )

3. AMV+. This method involves an initial x-space linearization at the uncertain variable means, with
iterative relinearizations at each MPP estimate x* until the MPP converges (commonly known as the AMV+
method).

g9(x) = g(a*) + Vag(a™) (x — ¥)
4. This is the same as AMV+, except that the linearizations are performed in u-space. This option has been
termed the u-space AMV+ method.

G(u) = g(u") + Vug(u*) " (u —u*)

5. Perform the MPP search on the original response functions without the use of any linearizations. The
MPP search may be done with NPSOL or OPT++.

Thus, in summary, the user can choose to perform an RIA or PMA approach when implementing a reliabil-
ity analysis. With either approach, there are a variety of methods to choose from to perform the linearization
during MPP search: MV method, AMV, u-space AMV, AMV +, u-space AMV+, or direct optimization
search for the MPP. Currently, the outputs for the MV technique consist of estimates of the mean and stan-
dard deviation of the response functions along with importance factors for each of the uncertain variables
in the case of independent random variables. Each of the other methodologies (AMV, AMV+, FORM)
output approximate values of the cumulative distribution function at the user-defined response levels.

(should I put a table in here with the various MPP search specification keywords?)
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An example DAKOTA input file showing RIA using u-space AMV (number 2 above) is listed in Fig-
ure10.8 This example quantifies the uncertainty in the response function

a
921, 22) = ;; (10.1)

by computing approximate response statistics using the u-space AMV method to determine the response
cumulative distribution function

P([g(x1,72)] < 2) (10.2)

X, and X, are independent, identically distributed lognormal random variables with medranaf stan-
dard deviations 00.5 .

The formulation of a reliability analysis requires the user to specifyntived _reliability method.

Then, the user specifies one possible search method for finding the MPP. In this example, we use
mpp.search u _linearize  _mean to specify that we are doing the AMV method in u-space. Fi-
nally, the user specifies response levels or probability/reliability levels to determine if the problem will
be solved using an RIA approach or a PMA approach. In the example figafe®&fve use RIA, we use
response _levels to specify the range of response levels for the problem. The resulting output for this
input is shown in Figurd 0.9, with probability levels and reliability levels listed for each response level (is
there a good explanation for the differences in these terms?)

If the user specifieaond _reliability as a method with no additional specification on how to do the
MPP search, then no MPP search is done: the Mean Value method is used. The MV results are shown
in Figure 10.10and consist of approximate mean and standard deviation of the response along with the
importance factors for each uncertain variable. The importance factors are a measure of the sensitivity
of the response function(s) to the uncertain input variables. The importance factors can be viewed as an
extension of linear sensitivity analysis combining deterministic gradient information with input uncertainty
information,i.e. input variable standard deviations. The accuracy of the importance factors is contingent
of the validity of the linear approximation used to approximate the true response functions.

Should I leave in the last Figuf®.11with the FORM comparison? Also, | need a better explanation how
FORM relates to thaond _reliability case with thano _linearize case and nip or sqp.

10.4 Polynomial Chaos Methods

The objective of these techniques is to characterize the response of systems whose governing equations
involve stochastic coefficients. The development of these techniques mirrors that of deterministic finite
element analysis through the utilization of the concepts of projection, orthogonality, and weak convergence.
The polynomial chaos expansion is based on a multidimensional Hermite approximation in standard normal
random variables.

The coefficients for the terms in the polynomial chaos expansion are determined either from a coupled
set of equations solved externally from the analysis package or from a set of statistical estimators known

to converge to the Fourier coefficients, albeit at a rate that is unknown a priori. In DAKOTA, the lat-

ter approach is implemented where both direct Monte Carlo sampling and Latin hypercube sampling are
available to serve as the estimators of the Fourier coefficients. A distinguishing feature of the methodology

is that the solution series expansions are expressed as random processes, and not merely as statistics as is
the case for many nondeterministic methodologies. This makes the technique particularly attractive for use

in multi-physics applications which link different analysis packages. A more detailed explanation of the
procedure can be found in Ghanem, et a#][[30].
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interface, \
application system asynch \
analysis_driver = 'uq_example’

variables, \
lognormal_uncertain = 2 \
Inuv_means = 1. 1 \
Inuv_std_deviations = 0505 \
Inuv_descriptor = 'TFlin’ "TF2In’ \
uncertain_correlation_matrix = 1 0.3 \
031

responses, \
num_response_functions = 1 \
# analytic_gradients \
numerical_gradients \
method_source dakota \
interval_type central \
fd_step_size = l.e-4 \
no_hessians

strategy, \
single_method #graphics

method, \
nond_reliability \
mpp_search u_linearize_mean \
response_levels = .4 5 55 .6 .65 .7
.75 .8 .85 9 1. 1.05 1.15 1.2 1.25 1.30 \

135 14 15 155 16 1.65 1.7 1.75

Figure 10.8: DAKOTA input file for UQ example using analytic reliability methods using an u-space AMV
method.
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Cumulative Distribution Function (CDF) for response_fni:

Response Level

Probability Level

5.4881163610e-01
6.0653065972e-01
6.3762815160e-01
6.7032004601e-01
7.0468808973e-01
7.4081822071e-01
7.7880078304e-01
8.1873075308e-01
8.6070797643e-01
9.0483741803e-01
1.0000000000e+00
1.0512710964e+00
1.1618342427e+00
1.2214027582e+00
1.2840254167e+00
1.3498588075e+00
1.4190675486e+00
1.4918246977e+00
1.6487212707e+00
1.7332530179e+00
1.8221188004e+00
1.9155408289e+00
2.0137527074e+00
2.1170000166e+00

1.3731709525e-01
1.8131180592e-01
2.0629637395e-01
2.3321443990e-01
2.6197643251e-01
2.9245518576e-01
3.2448677862e-01
3.5787267059%e-01
3.9238311420e-01
4.2776176043e-01
5.0000000000e-01
5.3626869081e-01
6.0761688580e-01
6.4212732941e-01
6.7551322138e-01
7.0754481424e-01
7.3802356749e-01
7.6678556010e-01
8.1868819408e-01
8.4168687601e-01
8.6268290475e-01
8.8169257045e-01
8.9876183893e-01
9.1396235904e-01

Reliability Index

1.0924526533e+00
9.1037721105e-01
8.1933948995e-01
7.2830176884e-01
6.3726404774e-01
5.4622632663e-01
4.5518860553e-01
3.6415088442e-01
2.7311316332e-01
1.8207544221e-01
3.0847722160e-17
-9.1037721105e-02
-2.7311316332e-01
-3.6415088442e-01
-4.5518860553e-01
-5.4622632663e-01
-6.3726404774e-01
-7.2830176884e-01
-9.1037721105e-01
-1.0014149322e+00
-1.0924526533e+00
-1.1834903744e+00
-1.2745280955e+00
-1.3655658166e+00

Figure 10.9: Output from Analytical Reliability UQ example using FORM.

MV Statistics for response_fnl:
Approximate Mean Response = 1.0000000000e+00
Approximate Standard Deviation of Response = 7.0710678119e-01
Importance Factor for variable x1 5.0000000000e-01
Importance Factor for variable x2 5.0000000000e-01
Importance Factors are an extension of LINEAR sensitivity analysis.

Figure 10.10: Output from Analytical Reliability UQ example using MV.
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Figure 10.11: Comparison of the cumulative distribution function (CDF) computed by FORM (+ marks)
and the exact CDF fof(zq, 22) = 2%

10.4.1 Uncertainty Quantification Example using Polynomial Chaos

A typical DAKOTA input file for performing an uncertainty quantification using polynomial chaos expan-
sions is shown in Figur@0.12 The analysis involves the use ofayered model (defined in theUQ
method specification) in order to manage the construction of a Hermite polynomial approximation (defined
in the ‘PCE interface specification) built using 250 LHS samples of the truth modedxample (defined

in the ‘DACE’ method andl1 ’ interface specifications).

After the Hermite polynomial surrogate model has been constructedaih@é_polynomial _chaos

method performs a UQ analysis using 1000 LHS samples on the surrogate to compute estimates of the
mean, standard deviation, coefficient of variation, and 95% confidence interval for the response function

and the probability of exceeding thiesponse _thresholds  value. As shown in Figur&0.13 the

method outputs these quantities in addition to the approximate coefficients in the polynomial chaos expan-
sion for the response function. It should be noted that only standard normal random variables are supported
in nond _polynomial _chaos at this time.

10.5 Future Nondeterministic Methods

Uncertainty analysis methods under investigation for future inclusion into the DAKOTA framework include
extensions to the analytical reliability techniques and sampling capabilities supported. Advanced “smart
sampling” techniques such as bootstrap sampling (BS), importance sampling (IS), quasi-Monte Carlo sim-
ulation (QMC), and Markov chain Monte Carlo simulation (McMC) are being investigated. Efforts have
been initiated to allow for the possibility of non-traditional representations of uncertainty. These include in-
terval analysis, Dempster-Shafer theory of evidence, possibility theory, and combinations of these. Finally,
the tractability and efficacy of the more intrusive variant of stochastic finite element/polynomial chaos
expansion methods, previously mentioned, is being assessed for possible implementation in DAKOTA.
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strategy,
single_method #graphics
method_pointer = 'UQ’

method,

id_method = 'UQ’

model_pointer = 'UQ_M’

nond_polynomial_chaos
expansion_order = 2
samples = 1000 seed = 12347
sample_type |hs
response_levels = 0.5

model,
id_model = 'UQ_M’
surrogate global
dace_method_pointer = 'DACE’
hermite

variables,
normal_uncertain = 2
nuv_means = 0 O
nuv_std_deviations = 1 1
nuv_descriptor = 'nl" 'n2

responses,
num_response_functions = 1
no_gradients
no_hessians

method,
id_method = 'DACE’
model_pointer = 'DACE_M’
nond_sampling
samples = 250 seed = 1158
sample_type lhs

model,
id_model = 'DACE_M’
single
interface_pointer = ’I1’

interface,
id_interface = ’'I1’

analysis_driver = ’log_ratio’

system asynchronous evaluation_concurrency = 5

\

\

Figure 10.12: DAKOTA input file for performing UQ using polynomial chaos expansions.
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Statistics based on 1000 observations:

Moments for each response function:

response_fnl: Mean = -2.785e+00 Std. Dev. = 4.940e+00
95\% confidence intervals for each response function:
response_fnl: Mean = ( -3.091e+00, -2.479e+00 )
Probabilities for each response function:

response_fnl: 83.000% below and 17.000% above the threshold value of

Polynomial Chaos coefficients vector output
response_fnl

OO0 hAWN PR

Coeff. of Variation = -1.774e+00

5.00000e-01

-2.7767149288e+00
-3.7452282807e+00
-6.5491680438e-03
-1.6293722861e+00
9.2459408840e-01
1.3637964830e+00

Figure 10.13: Output from UQ analysis using polynomial chaos expansions.

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



Chapter 11
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11.1 Overview

DAKOTA's optimization capabilities include a variety of gradient-based and nongradient-based optimiza-
tion methods. Numerous packages are available, some of which are commercial packages, some of
which are developed internally to Sandia, and some of which are free software packages from the open
source community. The downloaded version of DAKOTA excludes the commercially developed packages
but includes CONMIN, OPT++, COLINY, and PICO. Interfaces to DOT and NPSOL are provided with
DAKOTA, but to use either of these commercial optimizers, the user must obtain a software license and the
source code for these packages separately. The commercial software can then be compiled into DAKOTA
by following DAKOTA's installation procedures (see notegrakota/INSTALL ).

DAKOTA's input commands permit the user to specify two-sided nonlinear inequality constraints of the
formgr, < gi(x) < gu,, as well as nonlinear equality constraints of the fdrpix) = h;, (see also Sec-

tion 1.4.1). Some optimizers (e.g., NPSOL, OPT++) can handle these constraint forms directly, whereas
other optimizers (e.g., DOT, CONMIN) require DAKOTA to perform an internal conversion of all con-
straints to one-sided inequality constraints of the fggfx) < 0. In the latter case, the two-sided in-
equality constraints are treated @$x) — gy, < 0 andgr, — g;(x) < 0 and the equality constraints are
treated as;(x) — hy; < 0andhy; — hj(x) < 0. The situation is similar for linear constraints: NPSOL

and OPT++ support them directly, whereas DOT and CONMIN do not. For linear inequalities of the form
ar, < aiTx < ay, and linear equalities of the form;fx = ay;, the nonlinear constraint arrays in DOT

and CONMIN are further augmented to incluafex — ay;, < 0 anday, —al'x < 0 in the inequality case
anda/x — a;, < 0anda;, —a]x < 0in the equality case. Awareness of these constraint augmentation
procedures can be important for understanding the diagnostic data returned from the DOT and CONMIN
algorithms.

When gradient and Hessian information are used in the optimization, it is assumed that derivative com-
ponents will be computed only with respect to tlentinuous design variable§he omission of discrete
variables from gradient vectors and Hessian matrices is common among all DAKOTA optimization meth-
ods; however, inclusion of only the continuous design variables differs from parameter study methods
(which assume derivatives with respect to all continuous variables) and from nondeterministic analysis
methods (which assume derivatives with respect to the uncertain variables).
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11.2 Optimization Software Packages

11.2.1 COLINY Library

The COLINY library [42] supersedes the SGOPT library and contains a variety of nongradient-based opti-
mization algorithms. The suite of COLINY optimizers available in DAKOTA currently include the follow-

ing:
¢ Global Optimization Methods

— Several evolutionary algorithms, including genetic algorithowdify _ea)
— DIRECT [56] (coliny _direct )

e Local Optimization Methods

— Solis-Wets €oliny _solis _wets )
— Pattern Searctcfliny _pattern _search )

¢ Interfaces to Third-Party Local Optimization Methods

— Asynchronous Parallel Pattern Search (APPS) f (coliny _apps)
— COBYLAZ2 (coliny _cobyla )

For expensive optimization problems, COLINY’s global optimizers are best suited for identifying promis-
ing regions in the global design space. In multimodal design spaces, the combination of global identifi-
cation (from COLINY) with efficient local convergence (from DOT, NPSOL, CONMIN, or OPT++) can

be highly effective. None of the COLINY methods are gradient-based, which makes them appropriate for
problems for which gradient information is unavailable or is of questionable accuracy due to numerical
noise. The COLINY methods support bound constraints and nonlinear constraints, but not linear con-
straints. Note that the nonlinear constraints are satisfied using penalty function formulatijofefer to

Table 17.1 for additional method classification information.

An example specification for a simplex-based pattern search algorithm from COLINY is:

method, \
coliny_pattern_search \
max_function_evaluations = 2000 \
solution_accuracy = 1.0e-4 \
initial_delta = 0.05 \
threshold_delta = 1.0e-8 \
pattern_basis simplex \
exploratory_moves best_all \

contraction_factor = 0.75
The DAKOTA Reference Manuall[/] contains additional information on the COLINY options and set-
tings.
11.2.2 Constrained Minimization (CONMIN) Library
The CONMIN library p5] contains two methods for gradient-based nonlinear optimization. For con-

strained optimization, the Method of Feasible Directions (DAKOTAsnmin -mfd method selec-
tion) is available, while for unconstrained optimization, the Fletcher-Reeves conjugate gradient method

http://software.sandia.gov/appspack/
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(DAKOTAs conmin _frcg method selection) is available. Both of these methods are most efficient at
finding a local minimum in the vicinity of the starting point. The methods in CONMIN can be applied
to global optimization problems, but there is no guarantee that they will find the globally optimal design
point.

One observed drawback to CONMIN'’s Method of Feasible Directions is that it does a poor job handling
equality constraints This is the case even if the equality constraint is formulated as two inequality con-
straints. This problem is what motivates the modifications to MFD that are present in DOT's MMFD
algorithm. For problems with equality constraints, it is better to use the OPT++ nonlinear interior point
methods, NPSOL, or one of DOT'’s constrained optimization methods (see below).

An example specification for CONMIN’s Method of Feasible Directions algorithm is:

method, \
conmin_mfd \
convergence_tolerance = 1.0e-4 \
max_iterations = 100 \

output quiet

Refer to the DAKOTA Reference Manual{] for more information on the settings that can be used with
CONMIN methods.

11.2.3 Design Optimization Tools (DOT) Library

The DOT library (7] contains nonlinear programming optimizers, specifically the Broyden-Fletcher-
Goldfarb-Shanno (DAKOTAsdot _bfgs method selection) and Fletcher-Reeves conjugate gradient
(DAKOTA's dot frcg method selection) methods for unconstrained optimization, and the modified
method of feasible directions (DAKOTAdot _.mmfd method selection), sequential linear programming
(DAKOTA's dot _slp method selection), and sequential quadratic programming (DAKOdéts_sqp
method selection) methods for constrained optimization.

All DOT methods are local gradient-based optimizers which are best suited for efficient navigation to a
local minimum in the vicinity of the initial point. Global optima in nonconvex design spaces may be
missed. Other gradient based optimizers for constrained optimization include the NPSOL, CONMIN, and
OPT++ libraries.

Through theoptimization _type specification, DOT can be used to solve either minimization or max-
imization problems. For all other libraries (i.e., CONMIN, NPSOL, OPT++, COLINY), it is up to the
user to reformulate a maximization problem as a minimization problem by negating the objective func-
tion (i.e., maximizef(x) is equivalent to minimize- f(z)). An example specification for DOT's BFGS
guasi-Newton algorithm is:

method, \
dot_bfgs \
optimization_type maximize \
convergence_tolerance = 1.0e-4 \
max_iterations = 100 \

output quiet

See the DAKOTA Reference Manual{] for additional detail on the DOT commands. More information
on DOT can be obtained by contacting Vanderplaats Research and Developimémnt/atww.vrand.com

11.2.4 JEGA

The JEGA (John Eddy’s Genetic Algorithms) library contains two global optimization methods. The first
is a Multi-objective Genetic Algorithm (MOGA) which performs Pareto optimization. The second is a
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Single-objective Genetic Algorithm (SOGA) which performs optimization on a single objective function.
The JEGA library was written by John Eddy, currently a member of the technical staff at Sandia. These
functions are accessed andga, andsoga ) within DAKOTA. DAKOTA provides access to the JEGA
library through the JEGAOptimizer class. The DAKOTA Reference Maniuigl ¢ontains additional in-
formation on the JEGA options and settings. Secfi@rBdiscusses multiobjective optimization in more
detail, and there are some additional MOGA examples in Ch&pter

11.2.5 MOOCHO Library

The MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization) library, formerly known

as rSQP++, is a new addition to DAKOTA that is not yet publicly available. It provides both general-
purpose sequential quadratic programming (SQP) algorithms for nested analysis and design (NAND) as
well as reduced-space SQP algorithms for simultaneous analysis and design (SAND). Additional infor-
mation on SAND is provided in Sectidhl.3.2 MOOCHO algorithm capabilities are available using the
reduced _sqp method selection.

11.2.6 NPSOL Library

The NPSOL library $1] contains a sequential quadratic programming (SQP) implementation (DAKOTA's
npsol _sgp method selection). SQP is a nonlinear programming approach for constrained minimization
which solves a series of quadratic programming (QP) subproblems. It uses an augmented Lagrangian merit
function and a BFGS approximation to the Hessian of the Lagrangian. It is an infeasible method in that
constraints will be satisfied at the final solution, but not necessarily during the solution process.

NPSOL's gradient-based approach is best suited for efficient navigation to a local minimum in the vicinity
of the initial point. Global optima in nonconvex design spaces may be missed. Other gradient based
optimizers for constrained optimization include the DOT, CONMIN, and OPT++ libraries.

An example of an NPSOL specification is:

method, \
npsol_sqgp \
convergence_tolerance = 1.0e-6 \
max_iterations = 100 \

output quiet

See the DAKOTA Reference Manual (] for additional detail on the NPSOL commands. More in-
formation on NPSOL can be obtained by contacting Stanford Business Softwiaite:&tvww.sbsi-sol-
optimize.com

The NPSOL library generates diagnostics in addition to those appearing in the DAKOTA output stream.
These diagnostics are written to the default FORTRAN device 9 file @9 orfort.9 , depending
on the architecture) in the working directory.

11.2.7 OPT++ Library

The OPT++ library §0] contains primarily nonlinear programming optimizers for unconstrained, bound
constrained, and nonlinearly constrained minimization: Polak-Ribiere conjugate gradient (DAKOTA's
optpp _cg method selection), quasi-Newton (DAKOTA&ptpp _g_newton method selection), finite
difference Newton (DAKOTAsoptpp _fd _-newton method selection), and full Newton (DAKOTA's
optpp _newton method selection). The library also contains the parallel direct search nongradient-based
method [L3] (specified as DAKOTADptpp _pds method selection).
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OPT++'s gradient-based optimizers are best suited for efficient navigation to a local minimum in the
vicinity of the initial point. Global optima in nonconvex design spaces may be missed. OPT++'s PDS
method does not use gradients and has some limited global identification abilities; it is best suited for
problems for which gradient information is unavailable or is of questionable accuracy due to numeri-
cal noise. Some OPT++ methods are strictly unconstraioptbf _cg) and some support bound con-
straints Optpp _pds), whereas the Newton-based methodptfp _g_newton , optpp _fd _newton ,

and optpp _newton ) all support general linear and nonlinear constraints (refer to Table 17.1). Other
gradient-based optimizers include the DOT, CONMIN, and NPSOL libraries. For least squares methods
based on OPT++, refer to Secti@@.2.1

An example specification for the OPT++ quasi-Newton algorithm is:

method, \

optpp_g_newton \
max_iterations = 50 \
convergence_tolerance = le-4 \

output debug

See the DAKOTA Reference Manual{] for additional detail on the OPT++ commands.

The OPT++ library generates diagnostics in addition to those appearing in the DAKOTA output stream.
These diagnostics are written to the I T.DEFAULT.out in the working directory.

11.2.8 Parallel Integer Combinatorial Optimization (PICO)

DAKOTA employs the branch and bound capabilities of the PICO library for solving discrete and mixed
continuous/discrete constrained nonlinear optimization problems. This capability is implemented in
DAKOTA as a strategy and is discussed further in Sectidrh

11.2.9 SGOPT

The SGOPT library has been deprecated, and all methods have been migrated to the COLINY library.

11.3 Additional Optimization Capabilities

DAKOTA provides several capabilities which extend the services provided by the optimization software
packages described in Sectibh.2 First, any of the optimization algorithms can be used for multiobjective
optimization problems through the use of weighted sum techniques. Second, large-scale optimization
algorithms (e.g., MOOCHO) can be used for simultaneous analysis and design through the use of a fully-
intrusive interface to internal simulation residual vectors and Jacobian matrices. Finally, with any optimizer
(or least squares solver described in Sectidr®), user-specified (or in some cases automatic) scaling may

be applied to any of continuous design variables, functions (or least squares terms), and constraints.

11.3.1 Multiobjective Optimization

Multiobjective optimization means that there are two or more objective functions that you wish to optimize
simultaneously. Often these are conflicting objectives, such as cost and performance. The answer to a
multi-objective problem is usually not a single point. Rather, it is a set of points called the Pareto front.
Each point on the Pareto front satisfies the Pareto optimality criterion, which is stated as follows: a feasible
vector X* is Pareto optimal if there exists no other feasible vedfaxhich would improve some objective
without causing a simultaneous worsening in at least one other objective. Thus, if a feasibl€’mmiigts

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(©) 1997-2002



134

Optimization Capabilities

that CAN be improved on one or more objectives simultaneously, it is not Pareto optimal: it is said to be
"dominated” and the points along the Pareto front are said to be "non-dominated.”

There are two ways to approach a multiobjective problem. The most common approach is to combine mul-
tiple objectives into one, then use an appropriate optimization technique on the single objective function.
This approach is available in DAKOTA and is outlined below. The advantage of this approach is that one
is only solving a single objection problem, and can use an optimization method that is especially suited
for the particular problem class. The disadvantage of this approach is that a linear weighted sum objective
will not find optimal solutions if the true Pareto front is nonconvex. Also, if one wants to understand the
effects of changing weights, this method can become computationally expensive. Since each optimization
of a single weighted objective will find only one point near or on the Pareto front, many optimizations need
to be performed to get a good parametric understanding of the influence of the weights.

DAKOTA offers two options for multiobjective problems: one is to transform the multiobjective problem

into a single objective one. This approach is explained below. The other is to use a multiobjective ge-
netic algorithm noga) to create a population of nondominated solutions. foga method is explained

in Chapters2 and20. Over time, the selection operators of a genetic algorithm act to efficiently select
solutions along the Pareto front. Because a GA is inherently parallel, an entire population in a GA can
represent the Pareto front. Thus, although GAs are computationally expensive when compared to gradient-
based methods, the advantage is that one can obtain an entire Pareto set at the end of one genetic algorithm
run, as compared with having to run the “weighted sum” single objective problem multiple times with
different weights.

The selection of a multiobjective optimization problem is made through the specification of multiple ob-
jective functions in the responses keyword block (i.e.,rthe1objective  _functions  specification

is greater tharl). The weighting factors on these objective functions can be optionally specified using
themulti _objective  _weights keyword (the default is equal weightings). The composite objective
function for this optimization problen¥’, is formed using these weights as follows: = Zﬁ‘zl W [k

where thef;, terms are the individual objective function values, the terms are the weights, and is the num-
ber of objective functions. The weighting factors stipulate the relative importance of the design concerns
represented by the individual objective functions; the higher the weighting factor, the more dominant a
particular objective function will be in the optimization process.

Figure 11.1 shows a DAKOTA input file for a multiobjective optimization problem based on the “text-
book” test problem. This input file is namethkota _multiobjl.in in the /Dakota/test di-
rectory. In the standard textbook formulation, there is one objective function and two constraints. In
the multiobjective textbook formulation, all three of these functions are treated as objective functions
(num.objective  _functions = 3 ), with weights given by thenulti _objective  _weights key-

word. Note that it is not required that the weights sum to a value of one. The multiobjective optimization
capability also allows any number of constraints, although none are included in this example.

Figure 11.2 shows an excerpt of the results for this multiobjective optimization problem. The data for
function evaluation 9 show that the simulator is returning the values and gradients of the three objective
functions and that this data is being combined by DAKOTA into the value and gradient of the compos-
ite objective function, as identified by the head#tultiobjective transformation: ". This
combination of value and gradient data from the individual objective functions employs the user-specified
weightings of.7 , .2 , and.1 . Convergence to the optimum of the multiobjective problem is indicated in
this case by the gradient of the composite objective function going to zero (no constraints are active).

By performing multiple optimizations for different sets of weights, a family of optimal solutions can be
generated which define the trade-offs that result when managing competing design concerns. This set
of solutions is referred to as the Pareto set. Secti®d describes a solution strategy used for directly
generating the Pareto set in order to investigate the trade-offs in multiobjective optimization problems.

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



11.3 Additional Optimization Capabilities

135

# test file with a specific test. The is used to designate lines

strategy,
single_method
tabular_graphics_data

method,
npsol_sqgp
convergence_tolerance = 1.e-8

variables,
continuous_design = 2
cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9
cdv_lower_bounds 0.5 -2.9
cdv_descriptor 'x1’ 'x2'

interface,
system asynchronous
analysis_driver=  'text_book’

responses,
num_objective_functions = 3 \
multi_objective_weights = .7 .2 .1 \
analytic_gradients \
no_hessians \

Figure 11.1: Example DAKOTA input file for multiobjective optimization.
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Begin Function Evaluation 9

Parameters for function evaluation 9:
5.9388064484e-01 x1
7.4158741199e-01 x2

(text_book /var/tmp/qaagjayaZ /var/tmp/raahjayaZ)

Active response data for function evaluation 9:
Active set vector = { 3 3 3}
3.1662048104e-02 obj_fnl
-1.8099485679e-02 obj_fn2
2.5301156720e-01 obj_fn3
[ -2.6792982174e-01 -6.9024137409e-02 ] obj_fnl gradient
[ 1.1877612897e+00 -5.0000000000e-01 ] obj_fn2 gradient
[ -5.0000000000e-01 1.4831748240e+00 ] obj_fn3 gradient

Multiobjective transformation:
4.3844693257e-02 obj_fn
[ 1.3827220000e-06 5.8621370000e-07 | obj_fn gradient
7 1 1.0E+00 9 4.38446933E-02 1.5E-06 2 TTT
Exit NPSOL - Optimal solution found.

Final nonlinear objective value = 0.4384469E-01

Figure 11.2: DAKOTA results for the multiobjective optimization example.
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11.3.2 Simultaneous Analysis and Design (SAND) Optimization

DAKOTA was originally developed as a “black box” optimization tool that employs non-intrusive inter-
faces with simulation codes. While this approach is useful for many engineering design applications, it can
become prohibitively expensive when there is a large design spacé)(il®2 — 10%) design parameters)

and when the computational simulation is highly nonlinear. Current research and development is underway
to add a simultaneous analysis and design (SAND) capability to DAKOTA. This “all at once approach” is
considerably more intrusive to a simulation code than any current interfacing capability in DAKOTA. But

in some large-scale applications, the SAND method may be the only viable alternative for optimization.

The basic idea behind SAND is to converge a nonlinear simulation code at the same time that the optimality
conditions are being converged. This amounts to applying the nonlinear simulation residual equations as
equality constraints in the optimization problem and then using an infeasible optimization method (e.g.,
sequential quadratic programming) which only satisfies these equality constraints in the limit (i.e., at the
final optimal solution). This can result in a significant computational savings over black-box optimization
approaches which require a nonlinear simulation to be fully-converged on every function evaluation.

To implement a SAND technique, modifications to the simulation package are necessary so that the op-
timization software may have access to the internal residual vector and state Jacobian matrix used by the
simulation solver. The SAND technigues can then leverage the internal linear algebra of the simulation
package as appropriate in performing the search direction calculations. A SAND-type optimization does
make certain assumptions about the simulation package, such as there is access to the state Jacobian ma-
trix (although matrix free methods can be interfaced as well), exact values are used in the state Jacobian,
an implicit numerical solution scheme is used, there are no discontinuities in the system, and steady state
solutions are to be obtained (although SAND transient solution capabilities are under development). Many
single physics, PDE-based simulation codes fall in this category. SAND approaches can be applied to more
complex simulation codes, such as multi-physics packages, but substantial modifications are often needed
to make SAND feasible in these cases.

Details on SAND-type optimization approaches may be foundJif f]. Additional details on the SAND
implementation in DAKOTA will appear in future releases of this Users Manual.

11.3.3 Optimization with User-specified or Automatic Scaling

Some optimization problems involving design variables, objective functions, or constraints on vastly dif-
ferent scales may be solved more efficiently if these quantities are adjusted to a common scale (typically on
the order of unity). With any optimizer (or least squares solver described in Sd&idn user-specified

or automatic scaling may be applied to any of continuous design variables, nonlinear inequality and equal-
ity constraints, and linear inequality and equality constraints. User-specified scaling may be applied to
objective functions or least squares terms. Discrete variable scaling is not supported.

Scaling is enabled on a per-method basis for optimizers and least squares minimizers by including the
scaling keyword in the relevaniethod specification in the DAKOTA input deck. When scaling is
enabled, variables, functions, gradients, Hessians, etc., are transformed such that the optimizer iterates in
scaled variable space, whereas evaluations of the computational model as specified in the interface are
performed on the original problem scale. Therefore using scaling does not require rewriting the interface
to the simulation code.

Scaling factors are specified through the keywords listed in Thblg and are ignored if thecaling

keyword is omitted from thenethod specification. Each _scales keyword specifies no, one, or a
vector of scale values to be applied to the corresponding variables or responses. If a single value is specified
using any of these keywords it will apply to each component of the relevant vectocdzgscales =

3.0 will apply a characteristic scaling value 8f0 to each continuous design variable. Valid entries in

* _scales vectors include positive characteristic values (user-specified scale fadtd@rs}p exempt a
component from scaling, d3.0 for automatic scaling, if available for that component. Negative scale
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Table 11.1: Keywords for specifying scaling factors.

keyword input spec section default behavior

cdv _scales variables automatic

objective  _function _scales responses off (automatic not allowed
least _squares _term _scales responses off (automatic not allowed
nonlinear _inequality = _scales responses automatic

nonlinear _equality _scales responses automatic

linear _inequality  _scales method automatic

linear _equality _scales method automatic

values are not currently permitted.

When scaling is enabled, the following progression will be used to determine the type of scaling used on
each component of a variables or response vector:

1. When a strictly positive characteristic value is specified, the quantity will be scaled by it.

2. If a zero or no characteristic value is specified, automatic scaling will be attempted according to the
following scheme:

(a) two-sided bounds scaled into the interf@l1];

(b) one-sided bound or targets scaled by the absolute value of the characteristic value, moving the
bound or targetto -1 or +1.

(c) no bounds or targets: no automatic scaling possible, therefore no scaling for this component

Automatic scaling is not available for objective functions or least squares terms since they do not have
bound constraintsCaution: The scaling hierarchy is followed for all problem variables and constraints
when thescaling  keyword is specified, so one must note the default scaling behavior for each component
and manually exempt components with a scale value®f, if necessary.

Scaling for linear constraints specified throughinear _inequality  _scales or
linear _equality _scales is applied after any (user-specified or automatic) continuous vari-
able scaling. For example, for scaling mapping unscaled continuous design variébksaled variables
Z:

j j
TR
=0

xgw ’
we have the following matrix system for linear inequality constraints
ar, < Az < ay
ar < A; (diag(zam)Z + zo) < au
ar, — Ajzo < Aydiag(zn)z < ay — Ajzo
ar, < A;i < av,

and user-specified or automatically computed scaling multipliers are applied to this final transformed sys-
tem, which accounts for continuous design variable scaling. When automatic scaling is in use for linear
constraints they are linearly scaled by characteristic values only, but not affinely into the ifietjal

Figurell.3demonstrates the use of several scaling keywords for the textbook optimization problem. The
continuous design variabbel is scaled by a characteristic value4b , whereax2 is scaled automat-

ically into [0, 1] based on its bounds. The objective function will be scaled by a fact60.6f , the first
nonlinear constraint by a factor @6.0 , and the second nonlinear constraint is not scaled.
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strategy, \
single_method

method, \
dot_mmfd, \
max_iterations = 50, \
convergence_tolerance = le-4

variables, \
continuous_design = 2 \
cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 05 -29 \
cdv_scales 4.0 0.0 \
cdv_descriptor 'x1’ 'x2'

interface, \
fork \
analysis_driver = 'text_book’ \

responses, \

num_objective_functions = 1 \
objective_function_scales 50.0 \
num_nonlinear_inequality_constraints = 2 \
nonlinear_inequality_constraint_scales 15.0 1.0 \
numerical_gradients \

method_source dakota \

interval_type central \

fd_gradient_step_size = l.e-4 \
no_hessians

Figure 11.3: Sample usage of scaling keywords in DAKOTA input specification.
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Chapter 12

Nonlinear Least Squares for Parameter
Estimation

12.1 Overview

Nonlinear least squares methods are optimization algorithms which exploit the special structure of a sum
of the squares objective functiofij]. These problems commonly arise in parameter estimation, system
identification, and test/analysis reconciliation. In order to exploit the problem structure, more granularity is
needed in the response data than that required for a typical optimization problem. That is, rather than using
the sum-of-squares objective function and its gradient, least squares iterators require each term used in
the sum-of-squares formulation along with its gradient. This means that fia@ctions in the DAKOTA
response data set consist of the individual least squares terms along with any nonlinear inequality and
equality constraints. These individual terms are often calésiduals  in cases where they denote
errors of observed quantities from desired quantities.

The enhanced granularity needed for nonlinear least-squares algorithms allows for simplified computation
of an approximate Hessian matrix. These methods approximate the true Hessian matrix by neglecting
terms in which the residual function values appear, under the assumption that the residuals tend towards
zero at the solution. As a result, residual function value and gradient information is sufficient to define the
value, gradient, and approximate Hessian of the sum-of-squares objective function. SeelSé@fon
additional details on this approximation.

In practice, least squares solvers will tend to be significantly more efficient than general-purpose optimiza-
tion algorithms when the Hessian approximation is a good one, i.e., when the residuals tend towards zero
at the solution. Specifically, they can exhibit the quadratic convergence rates of full Newton methods,
even though only first-order information is used. Least squares solvers may experience difficulty when the
residuals at the solution are significant.

In order to specify a least-squares problem, the responses section of the DAKOTA input should be config-
ured usingnumleast _squares _terms (as opposed tmumobjective  _functions  in the case

of optimization). Any linear or nonlinear constraints are handled in an identical way to that of opti-
mization (see Sectiofil.1 note that neither Gauss-Newton nor NLSSOL require any constraint aug-
mentation). Gradients of the least squares terms and nonlinear constraints are required and should be
specified using eithenumerical _gradients , analytic _gradients , or mixed _gradients

Since second derivatives of the least squares terms are not needed by nature of the Gauss-Newton
approximation, theno_hessians specification should be used (exception: the derivative-order mis-
match for nonlinearly-constrained Gauss-Newton described in Set#idhlrequires a specification of
analytic  _hessians ). DAKOTAs scaling options, described in Sectidi.3.3can be used on least
squares problems, using theast _squares _term _scales keyword to scale least squares residuals,
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if desired.

12.2 Solution Techniques

Nonlinear least squares problems can be solved using either the Gauss-Newton algorithm, which leverages
the full Newton method from OPT++, the NLSSOL algorithm, which is closely related to NPSOL, or the
NL2SOL algorithm which uses a secant-based algorithm. Details of each are provided below.

12.2.1 Gauss-Newton

DAKOTA's Gauss-Newton algorithm consists of combining an implementation of the Gauss-Newton Hes-
sian approximation (see Sectidm.? with full Newton optimization algorithms from the OPT++ pack-
age p(). This approach can be selected usingapépp _g_newton method specification. An example
specification follows:

method, \

optpp_g_newton \
max_iterations = 50 \
convergence_tolerance = le-4 \

output debug

Refer to the DAKOTA Reference Manudl {] for more detail on the input commands for the Gauss-Newton
algorithm.

The Gauss-Newton algorithm is gradient-based and is best suited for efficient navigation to a local least
squares solution in the vicinity of the initial point. Global optima in multimodal design spaces may be
missed. Gauss-Newton supports bound, linear, and nonlinear constraints. However, for the generally-
constrained case, a derivative order mismatch exists in that the nonlinear interior point full-Newton al-
gorithm will require second-order information for the nonlinear constraints whereas the Gauss-Newton
approximation for the objective function Hessian only requires first order information for the least squares
terms. This will be addressed in future releases through the use of quasi-Newton approximations to the
constraint Hessians.

12.2.2 NLSSOL

The NLSSOL algorithm is a commercial software product of Stanford University that is bundled with
current versions of the NPSOL library. It uses an SQP-based approach to solve generally-constrained
nonlinear least squares problems. It periodically employs the Gauss-Newton Hessian approximation to
accelerate the search. Its derivative order is balanced in that it requires only first-order information for
the least squares terms and nonlinear constraints. This approach can be selected uisglthesqp

method specification. An example specification follows:

method, \
nissol_sqp \
convergence_tolerance = le-8

Refer to the DAKOTA Reference Manual{] for more detail on the input commands for NLSSOL.

12.2.3 NL2SOL

The NL2SOL algorithm [REF] is a secant-based least-squares algorithm ¢hstipgerlinearly convergent.

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



12.3 Examples 143

Active response data for function evaluation 1:
Active set vector = { 3 3}
6.0000000000e-01 least_sq_terml
2.0000000000e-01 least_sq_term2
[ -1.6000000000e+01 1.0000000000e+01 ] least_sqg_terml gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term2 gradient

nlf2_evaluator_gn results: objective fn. =

4.0000000000e-01

nlf2_evaluator_gn results: objective fn. gradient
[ -1.9600000000e+01 1.2000000000e+01 ]

nlf2_evaluator_gn results: objective fn. Hessian
[[ 5.1400000000e+02 -3.2000000000e+02

-3.2000000000e+02 2.0000000000e+02 1]

Figure 12.1: Example of the Gauss-Newton approximation.

12.2.4 Future plans

The least squares branch in DAKOTA is an area of continuing enhancements, particularly through the
addition of new least squares algorithms. One potential future addition is the orthogonal distance regression
(ODR) algorithms which estimate values for both independent and dependent parameters.

12.3 Examples

Both the Rosenbrock and textbook example problems can be formulated as nonlinear least squares prob-
lems. Refer to Chapte20 for more information on these formulations. Figut2.1 shows an excerpt

from the textbook example which demonstrates use of the Gauss-Newton approximation in computing the
objective function value, gradient, and Hessian from values and gradients of the least squares terms.
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Chapter 13

Advanced Optimization Strategies

13.1 Overview

DAKOTA's strategy capabilities were developed in order to provide a control layer for managing multiple
iterators and models. It was driven by the observed need for “meta-optimization” and other high level
systems analysis procedures in real-world engineering design problems. This capability allows the use of
existing iterative algorithm and computational model software components as building blocks to accom-
plish more sophisticated studies, such as hybrid optimization, surrogate-based optimization, mixed integer
nonlinear programming, or optimization under uncertainty.

13.2 Multilevel Hybrid Optimization

In the multilevel hybrid optimization strategy (keywordnulti _level ), a sequence of optimization
methods are applied to find an optimal design point. The goal of this strategy is to exploit the strengths
of different optimization algorithms through different stages of the optimization process. Global/local
hybrids (e.g., genetic algorithms combined with nonlinear programming) are a common example in which
the desire for a global optimum is balanced with the need for efficient navigation to a local optimum. An
important related feature is that the sequence of optimization algorithms can employ models of varying
fidelity. In the global/local case, for example, it would often be advantageous to use a low-fidelity model
in the global search phase, followed by use of a more refined model in the local search phase.

The specification for multilevel optimization involves a list of method identifier strings, and each of the
corresponding method specifications has the responsibility for identifying the variables, interface, and re-
sponses specifications that each method will use (see the DAKOTA Reference Mafaald the exam-

ple discussed below). Currently, only the uncoupled multilevel approach is availableotipked and
uncoupled adaptive approaches are placeholders for future capabilities.

In the uncoupled multilevel optimization approach, a sequence of optimization methods is invoked in
the order specified in the DAKOTA input file. The best solution from each method is used as the start-
ing point for the following method. Method switching is governed by the separate convergence con-
trols of each method; that igach method is allowed to run to its own internal definition of comple-
tion without interferencelndividual method completion may be determined by convergence criteria (e.g.,
convergence _tolerance ) or iteration limits (e.g.max.terations ).

Figure 13.1 shows a DAKOTA input file that specifies a multilevel optimization strategy to solve the
“textbook” optimization test problem. This input file is namddkota _multilevel.in in the
/Dakota/test directory. The three optimization methods are identified usingntie¢hod _list
specification in the strategy section of the input file. The identifier strings listed in the specification are
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‘GA for genetic algorithm, PS for pattern search, andNLP for nonlinear programming. Following

the strategy keyword block are three method keyword blocks. Note that each method has a tag follow-
ing theid _method keyword that corresponds to one of the method names listed in the strategy keyword
block. By following the keyword tags for thmterface  _pointer , variables _pointer , and
responses _pointer , itis easy to see the specification linkages for this problem. The GA optimizer
runs first and uses the variables keyword blo¢k’; the interface keyword block1 ’, and the responses
keyword block R1'. Once the GA is complete, the PS optimizer begins operation, and uses the best GA
result as its starting point. The PS method again ugés ‘11 ’, and ‘R1'. Since both GA and PS are
nongradient-based optimization methods, there is no need for gradient or Hessian information in the re-
sponse keyword block. The NLP optimizer runs last, using the best result from the PS method as its starting
point. It also uses the/1’ and ‘11 * keyword blocks, but it uses the responses keyword bl&X Since

the full Newton optimizer used in this examplepfpp _newton ) needs analytic gradient and Hessian
data to perform its search.

13.3 Multistart Local Optimization

A simple, heuristic, global optimization technique is to use many local optimization runs, each of which is
started from a different initial point in the parameter space. This is known as multistart local optimization.
This is an attractive strategy in situations where multiple local optima are known or expected to exist in the
parameter space. However, there is no theoretical guarantee that the global optimum will be found. This
approach combines the efficiency of local optimization methods with a user-specified global stratification
(using a specifiedtarting  _points list, a number of specifiedandom _starts , or both; see the
Reference Manuall[/] for additional specification details). Since solutions for different starting points are
independent, parallel computing may be used to concurrently run the local optimizations.

An example input file for multistart local optimization on the “quasie” test function (see
quasi _sine _fcn.C in/Dakota/test ) is shown in Figurel3.2 The strategy keyword block in the
input file contains the keyworthulti _start , along with the set of starting points that will be used for
the optimization runs. The other keyword blocks in the input file are similar to what would be used in a
single optimization run.

Thequasi _sine test function has multiple local minima, but there is an overall trend in the function that
tends toward the global minimum @t1, z2) = (0.177,0.177). See B5] for more information on this test
function. Figurel3.3shows the results summary for the five local optimizations performed. From the five
starting points (as identified by th&l , x2 headers), the five local optima (as identified by & , x2*
headers) are all different and only one of the local optimizations finds the global minimum.

13.4 Pareto Optimization

The Pareto optimization strategy (keywornoareto _set ) is related to the multiobjective optimization
capabilities discussed in Sectitfi.3.1 However, in a Pareto optimization strategy, multiple sets of multi-
objective weightings will be evaluated. The user can specify these weighting sets in the strategy keyword
block using amulti _objective  _weight _sets list, a number ofandom _weight _sets , or both

(see the Reference Manuaif for additional specification details). Figut8.4shows the input commands

from the filedakota _pareto.in  in the/Dakota/test directory.

DAKOTA performs one multiobjective optimization problem for each set of multiobjective weights. The
collection of computed optimal solutions form a Pareto set, which can be useful in making trade-off deci-
sions in engineering design. Since solutions for different multiobjective weights are independent, parallel
computing may be used to concurrently execute the multiobjective optimization problems.

Figure 13.5shows the results summary for the Pareto-set optimization strategy. For the four multiobjec-
tive weighting sets (as identified by thel, w2, w3 headers), the local optima (as identified by &g
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strategy,
graphics
multi_level uncoupled
method_list = 'GA’ 'PS’ 'NLP’

method,
id_method = 'GA’
model_pointer = 'M1’
coliny_ea
seed = 1234
population_size = 10
verbose output

method,

id_method = 'PS’

model_pointer = 'M1’

coliny_pattern search stochastic
seed = 1234
initial_delta = 0.1
threshold_delta = 1.e-4
solution_accuracy = 1.e-10
exploratory_moves basic_pattern
verbose output

method,
id_method = 'NLP’
model_pointer = 'M2’
optpp_newton
gradient_tolerance = 1.e-12
convergence_tolerance = 1.e-15
verbose output

model,
id_model = 'M1’
single
variables_pointer = V1’
interface_pointer = 'I1'
responses_pointer = 'R1’

model,
id_model = 'M2’
single
variables_pointer = 'V1'
interface_pointer = 11’
responses_pointer = 'R2’

variables,
id_variables = 'V1'
continuous_design = 2
cdv_initial_point 0.6 0.7
cdv_upper_bounds 5.8 29
cdv_lower_bounds 0.5 -2.9
cdv_descriptor X1 x2'

interface,
id_interface = 11
direct
analysis_driver=  'text_book’

responses,
id_responses = 'R1’
num_objective_functions = 1
no_gradients
no_hessians

responses,
id_responses = 'R2’
num_objective_functions = 1
analytic_gradients
analytic_hessians

Figure 13.1:

DAKOTA input file for the multilevel optimization strategy.
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strategy, \
multi_start graphics \
method_pointer = 'NLP’ \
random_starts = 3 seed = 123 \
starting_points = -.8 -.8 \
-8 .8 \
8 -8 \
8 .8 \
0. O
method, \
id_method = 'NLP’ \
dot_bfgs
variables, \
continuous_design = 2 \
cdv_lower_bounds -1.0 -1.0 \
cdv_upper_bounds 1.0 1.0 \
cdv_descriptor 'x1’ 'x2'
interface, \
system #asynchronous \
analysis_driver = ’quasi_sine_fcn’
responses, \
num_objective_functions = 1 \
analytic_gradients
no_hessians

Figure 13.2: DAKOTA input file for the multistart local optimization strategy.

<<<<< Results summary:
set_id x1 x2 x1* x2

obj_fn
1 -0.8 -0.8 -0.8543728665 -0.8543728665 0.5584096919
2 -0.8 0.8 -0.9998398719 0.177092822 0.291406596
3 0.8 -0.8 0.177092822 -0.9998398719 0.291406596
4 0.8 0.8 0.1770928217  0.1770928217  0.0602471946
5 0 0 0.03572926375 0.03572926375 0.08730499239

Figure 13.3: DAKOTA results summary for the multistart local optimization strategy.
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strategy, \
pareto_set graphics \

opt_method_pointer = 'NLP’ \
multi_objective_weight_sets =

1. 0.

0. 1.

0. O

.333 .333 .33

Wk oo
-

method, \
id_method = 'NLP’ \
dot_bfgs

variables, \
continuous_design = 2 \
cdv_initial_point 0.9 1.1 \
cdv_upper_bounds 5.8 2.9 \
cdv_lower_bounds 0.5 -2.9 \
cdv_descriptor 'x1' X2’

interface, \
system #asynchronous \
analysis_driver = 'text_book’

responses, \
num_objective_functions = 3 \
analytic_gradients
no_hessians

Figure 13.4: DAKOTA input file for the Pareto optimization strategy.

x2 headers) are all different and correspond to individual objective function valugglof2, f3) =
(0.0,0.5,0.5), (13.1, —1.2, 8.16), (532., 33.6, —2.9), and (0.125, 0.0, 0.0) (note: the composite objective
function is tabulated under thabj _fn header). The first three solutions reflect exclusive optimization of
each of the individual objective functions in turn, whereas the final solution reflects a balanced weighting
and the lowest sum of the three objectives. Plotting thigde f2, f3) triplets on a 3-dimensional plot

results in a Pareto surface (not shown), which is useful for visualizing the trade-offs in the competing
objectives.

<<<<< Results summary:

set_id wil w2 w3 x1 X2 obj_fn
1 0 0.9996554048 0.997046351 7.612301561e-11
0 0 . 29 -1.2
0 0 1 5.8 1.12747589e-11 -2.9
0.333 0.333 0.333 0.5  0.5000000041 0.041625

o

ENEANNES

Figure 13.5: DAKOTA results summary for the Pareto-set optimization strategy.
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13.5 Mixed Integer Nonlinear Programming (MINLP)

Many nonlinear optimization problems involve a combination of discrete and continuous variables. These
are known as mixed integer nonlinear programming (MINLP) problems. A typical MINLP optimization
problem is formulated as follows:

minimize:  f(x,d)

subjectto: g <g(x,d) <gu
h(x,d) = h, (13.1)
xp <x <Xy
de{-2,-1,0,1,2}

whered is a vector whose elements are integer values. In situations where the discrete variables can
be temporarily relaxed (i.e., noncategorical discrete variables, see Sé@i@, the branch-and-bound
algorithm can be applied. Categorical variables (e.g., true/false variables, or binary state variables) that
are inherently discrete cannot be used with the branch and bound strategy. During the branch and bound
process, the discrete variables are treated as continuous variables and the integrality conditions on these
variables are incrementally enforced through a sequence of optimization subproblems. By the end of this
process, an optimal solution that is feasible with respect to the integrality conditions is computed.

DAKOTA's branch and bound strategy (keywotatanch _and _bound ) can solve optimization problems
having either discrete or mixed continuous/discrete variables. This strategy uses the parallel branch-and-
bound algorithm from the PICO software packang]][16] to generate a series of optimization subprob-

lems (“branches”). These subproblems are solved as continuous variable problems using any of DAKOTA'S
nonlinear optimization algorithms (e.g., DOT, NPSOL). When a solution to a branch is feasible with re-
spect to the integrality constraints, it provides an upper bound on the optimal solution, which can be used
to prune branches with higher objective functions which are not yet feasible. Since solutions for differ-
ent branches are independent, parallel computing may be used to concurrently execute the optimization
subproblems.

PICO, by itself, targets the solution of mixed integer linear programming (MILP) problems, and through
coupling with DAKOTA's nonlinear optimizers, is extended to solution of MINLP problems. In the case of
MILP problems, the upper bound obtained with a feasible solution is an exact bound and the branch and
bound process is provably convergent to the global minimum. For nonlinear problems which may exhibit
nonconvexity or multimodality, the process is heuristic in general, since there may be good solutions that
are missed during the solution of a particular branch. However, the process still computes a series of locally
optimal solutions, and is therefore a natural extension of the results from local optimization techniques for
continuous domains. Only with rigorous global optimization of each branch can a global minimum be
guaranteed when performing branch and bound on nonlinear problems of unknown structure.

In cases where there are only a few discrete variables and when the discrete values are drawn from a small
set, then it may be reasonable to perform a separate optimization problem for all of the possible combi-
nations of the discrete variables. However, this brute force approach becomes computationally intractable
if these conditions are not met. The branch-and-bound algorithm will generally require solution of fewer
subproblems than the brute force method, although it will still be significantly more expensive than solving

a purely continuous design problem.

13.5.1 Example MINLP Problem

As an example, consider the following MINLP proble&t]:
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6
minimize:  f(x) =Y (2 — 1.4)*
i=1

2

gr=27 - <0

T2
2

go = 23 — % <0 (13.2)

—10 < 21,22, 23,24 < 10

x5, x6 € {0,1,2,3,4}

This problem is a variant of the textbook test problem described in Ch2@tém addition to the introduc-

tion of two integer variables, a modified valuelot is used inside the quartic sum to render the continuous
solution a non-integral solution. Figule.6 shows a DAKOTA input file for solving this problem. This

input file is namedlakota _bandb.in in the/Dakota/test directory. Note the specification for the
discrete variables, where lower and upper bounds are given. The discrete variables can take on any integer
value within these bounds.

Figure13.7shows the sequence of branches generated for this problem. The first optimization subproblem
relaxes the integrality constraint on parameteysandzg, so that) < x5 < 4 and0 < x4 < 4. The

values forz; andxg at the solution to this first subproblem are = x4 = 1.4. Sincexs andxg must be
integers, the next step in the solution process “branches” on parametigicreate two new optimization
subproblems; one with < x5 < 1 and the other wit < x5 < 4. Note that, at this first branching, the
bounds oneg are still0 < zg < 4. Next, the two new optimization subproblems are solved. Since they

are independent, they can be performed in parallel. The branch-and-bound process continues, operating
on bothx; andzg , until a optimization subproblem is solved whareandxg are integer-valued. At the
solution to this problem, the optimal values foy andxg arexs = 24 = 1.

In this example problem, the branch-and-bound algorithm executes as few as five and no more than seven
optimization subproblems to reach the solution. For comparison, the brute force approach would require
25 optimization problems to be solved (i.e., five possible values for eacharfidzg ).

In the example given above, the discrete variables are integer-valued. In some cases, the discrete variables
may be real-valued, such asc {0.0,0.5,1.0,1.5,2.0}. The branch-and-bound algorithm is restricted to

work with integer values. Therefore, it is up to the user to perform a transformation between the discrete
integer values from DAKOTA and the discrete real values that are passed to the simulation code (see
Section4.2.2. When integrality is not being relaxed, a common mapping is to use the integer value from
DAKOTA as the index into a vector of discrete real values. However, when integrality is relaxed, additional
logic for interpolating between the discrete real values is needed.

13.6 Optimization Under Uncertainty (OUU)

The nondeterministic optimization strategy (a.k.a. optimization under uncertainty) incorporates an uncer-
tainty quantification method within the optimization process. This is often needed in engineering design
problems when one must include the effect of input parameter uncertainties on the response functions of
interest. A typical engineering example of OUU would minimize the probability of failure of a structure
for a set of applied loads, where there is uncertainty in the loads and/or material properties of the structural
components.

In the OUU strategy in DAKOTA, a nondeterministic method is used to evaluate the effect of uncertain
variable distributions on response functions of interest (refer to Chaptir additional information on
nondeterministic analysis). Statistics on these response functions are then included in the objective and
constraint functions of an optimization process. Three approaches are currently supported: nested OUU,
surrogate-based OUU, and trust-region surrogate-based OUU. Additional details and computational results
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strategy, \
branch_and_bound \
opt_method_pointer = 'NLP’ \

method, \
npsol_sgp \
id_method = 'NLP’ \
convergence_tol = 1.e-8

variables, \
continuous_design = 4 \
cdv_initial_point 0.5 15 0.5 15 \
cdv_lower_bounds -10.0 -10.0 -10.0 -10.0 \
cdv_upper_bounds 10.0 10.0 10.0 10.0 \
discrete_design = 2 \
ddv_initial_point 2 2 \
ddv_lower_bounds 0
ddv_upper_bounds 4

n O
-

interface, \
direct \
analysis_driver = 'text_book’ \

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \
interval_type central \
method_source dakota \
fd_gradient_step_size = 1.0E-5 \
no_hessians

Figure 13.6: DAKOTA input file for the branch-and-bound strategy for solving MINLP optimization prob-
lems.
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Bounds: 1};= <4
NLP1 0,4 |

Soln.: xg=x, —l 4 No iterator concurrency
on first NLP (idle servers)

I-"= 0.6513
Bounds: 0 € x: = 1 Bounds: 2 =x5=4 "—l
{li_\hi—L ”i:-‘\'ri:'“l Can prune
~an prune
Soln.: xs=1, x5=1.4 Soln.: xs=2, xs=1.4 | if NLP4
=0.6769 0.7809 complete
Bounds: 0 x5 = 1| |Bounds: 0 £x5= 1 Bounds: 2=x5=4| |Bounds: 2=x5=4
0Zxs<1 2<x5<4 0<xg< 1 2<xg ~4
Soln.: xs=xg=1 Soln.: x5=1, x4=2 Soln.: x5=2. xg=1 Soln.: x5=xs=2
f=0.7025 = 0.8065 f=0.8065 f=10.9105

Optimal solution

Figure 13.7: Branching history for example MINLP optimization problem.

[Opt | <—
UQ~

u r,
Sim

Figure 13.8: Formulation 1: Nested OUU.
are provided in]9.

13.6.1 Nested OUU

In the case of a nested approach, the optimization loop is the outer loop which seeks to optimize a nonde-
terministic quantity (e.g., minimize probability of failure). The uncertainty quantification (UQ) inner loop
evaluates this nondeterministic quantity (e.g., computes the probability of failure) for each optimization
function evaluation. Figur&3.8depicts the nested OUU iteration whetere the design variablea,are

the uncertain variables characterized by probability distributiop&l, u) are the response functions from

the simulation, and,,(d) are the statistics generated from the uncertainty quantification on these response

functions.

Figure13.9shows a DAKOTA input file for a nested OUU example problem that is based on the textbook
test problem. This input file is namethkota _ouul th.in in the/Dakota/test directory. In this
example, the objective function contains two probability of failure estimates, and an inequality constraint
contains another probability of failure estimate. For this example, failure is defined to occur when one of
the textbook response functions exceeds its threshold value. The strategy keyword block at the top of the

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(©) 1997-2002



154

Advanced Optimization Strategies

input file identifies this as an OUU problem. The strategy keyword block is followed by the optimization
specification, consisting of the optimization method, the continuous design variables, and the response
guantities that will be used by the optimizer. The mapping matrices used for incorporating UQ statistics
into the optimization response data are described in the DAKOTA Reference Marildllfie uncertainty
guantification specification includes the UQ method, the uncertain variable probability distributions, the
interface to the simulation code, and the UQ response attributes. As with other complex DAKOTA input
files, the identification tags given in each keyword block can be used to follow the relationships among the
different keyword blocks.

Latin hypercube sampling is used as the UQ method in this example problem. Thus, each evaluation of the
response functions by the optimizer entails 50 Latin hypercube samples. In general, nested OUU studies
can easily generate several thousand function evaluations and gradient-based optimizers may not perform
well due to noisy or insensitive statistics resulting from under-resolved sampling. These observations
motivate the use of surrogate-based approaches to OUU.

Other nested OUU examples in thBakota/test directory includedakota _ouul _tbch.in
which adds an additional interface for including deterministic data in the textbook OUU problem, and
dakota _ouul _cantilever.in , Which solves the cantilever OUU problem (see Seclfrb with a
nested approach. For each of these files, iiedentifies formulation 1, which is short-hand for the nested
approach.

13.6.2 Surrogate-Based OUU (SBOUU)

Surrogate-based optimization under uncertainty strategies can be effective in reducing the expense of OUU
studies. Possible formulations include use of a surrogate model at the optimization level, at the uncer-
tainty quantification level, or at both levels. These surrogate models encompass both data fit surrogates
(at the optimization or UQ level) and model hierarchy surrogates (at the UQ level only). BEigui@de-

picts the different surrogate-based formulations whgrands,, are approximate response functions and
approximate response statistics, respectively, generated from the surrogate models.

SBOUU examples in the/Dakota/test directory include dakota _sbouu2 _tbch.in

dakota _sbouu3 _tbch.in , and dakota _sbouu4 _tbch.in , which solve the textbook OUU
problem, and dakota _sbouu2 _cantilever.in , dakota _sbouu3 _cantilever.in , and

dakota _sbouu4 _cantilever.in , which solve the cantilever OUU problem (see Secfi0rh). For

each of these files, the2)” “3,” and “4” identify formulations 2, 3, and 4, which are short-hand for

the “layered containing nested,” “nested containing layered,” and “layered containing nested containing
layered” surrogate-based formulations, respectively. In general, the use of surrogates greatly reduces the
computational expense of these OUU study. However, without restricting and verifying the steps in the
approximate optimization cycles, weaknesses in the data fits can be exploited and poor solutions may
be obtained. The need to maintain accuracy of results leads to the use of trust-region surrogate-based
approaches.

13.6.3 Trust-Region Surrogate-Based OUU (TR-SBOUU)

The TR-SBOUU approach applies the trust region logic of deterministic SBO (see Séé&tignto
SBOUU. Trust-region verifications are applicable when surrogates are used at the optimization level, i.e.,
formulations 2 and 4. As a result of periodic verifications and surrogate rebuilds, these techniques are
more expensive than SBOUU; however they are more reliable in that they maintain the accuracy of results.
Relative to nested OUU (formulation 1), TR-SBOUU tends to be less expensive and less sensitive to initial
seed and starting point.

SBOUU examples in the/Dakota/test directory include dakota _trsbouu2 _tbch.in
and dakota _trsbouud4 _thch.in , which solve the textbook OUU problem, and
dakota _trsbouu2 _cantilever.in anddakota _trsbouu4 _cantilever.in , which solve the

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



13.6 Optimization Under Uncertainty (OUU)

155

strategy, \
single_method \
method_pointer = 'OPTIM’

method, \
id_method = 'OPTIM’ \
model_pointer = 'OPTIM_M' \
npsol_sqp \
convergence_tolerance = 1.e-8

model, \

id_model = 'OPTIM_M' \

nested \
variables_pointer = 'OPTIM_V’ \
sub_method_pointer = 'UQ’ \
responses_pointer = 'OPTIM_R’ \
primary_response_mapping = 1. 0. 0.
secondary_response_mapping = 0. 0. 0.

or
oe
oo

0. 0.
0. 0.

variables, \
id_variables = 'OPTIM_V" \
continuous_design = 2 \
cdv_initial_point 1.8 1.0 \
cdv_upper_bounds 2.164 4.0 \
cdv_lower_bounds 15 0.0 \
cdv_descriptor 'd1’ 'd2"

responses, \

id_responses = 'OPTIM_R’ \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 1 \
nonlinear_inequality_upper_bounds = .1 \
numerical_gradients \

method_source dakota \

interval_type central \

fd_gradient_step_size = l.e-1 \
no_hessians

method, \
id_method = 'UQ’ \
model_pointer = 'UQ_M’ \
nond_sampling, \
samples = 50 seed = 1 sample_type lhs \
response_levels = 3.6e+11 1.2e+05 3.5e+05 \
complementary distribution

model, \
id_model = 'UQ_M' \
single \
variables_pointer = 'UQ_V’ \
interface_pointer = 'UQ_I' \
responses_pointer = 'UQ_R’

variables, \

id_variables = 'UQ_V’ \

continuous_design = 2 \
cdv_descriptor 'd1’ 'd2" \

normal_uncertain = 2 \
nuv_means = 248.89, 593.33 \
nuv_std_deviations = 124, 297 \
nuv_descriptor = ‘nuvl’ ‘nuv2’ \

uniform_uncertain = 2 \
uuv_lower_bounds = 199.3, 474.63 \
uuv_upper_bounds = 2985, 712. \
uuv_descriptor = uuvl  'uuv2’ \

weibull_uncertain = 2 \
wuv_alphas 12., 30. \
wuv_betas 250., 590. \
wuv_descriptor = ‘wuvl ‘'wuv2'

interface, \
id_interface = 'UQ_I' \
system asynch evaluation_concurrency = 5 \
analysis_driver= "text_book_ouu’

responses, \
id_responses = 'UQ_R’ \
num_response_functions = 3 \
no_gradients \
no_hessians

Figure 13.9: DAKOTA input file for the nested OUU example.
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Figure 13.10: Formulations 2, 3, and 4 for Surrogate-based OUU.

cantilever OUU problem (see Secti@f.5).

The TR-SBOUU algorithms are a subject of active research and development. Initial computational results
for several example problems are availablelif]]

13.7 Surrogate-Based Optimization (SBO)

In the surrogate-based optimization strategy (keywstdrogate _based _opt ) the optimization algo-

rithm operates on a surrogate model instead of directly operating on the computationally expensive simu-
lation model. The surrogate model can be formed from data samples and surface fit functions, or it can be
a simplified version (e.g., coarsened finite element mesh) of the original simulation model. For either type
of surrogate model, the SBO algorithm periodically checks the accuracy of the surrogate model against
the original simulation model. The SBO strategy in DAKOTA can be implemented using heuristic rules
(less expensive) or provably-convergent rules (more expensive). The heuristic SBO strategy is particularly
effective on real-world engineering design problems that contain nonsmooth features (e.g., slope discon-
tinuities, numerical noise) where gradient-based optimization methods often have trouble, and where the
computational expense of the simulation precludes the use of nongradient-based methods.

13.7.1 SBO with Surface Fit Models

In SBO with surface fit functions, a sequence of optimization subproblems are evaluated, each of which is
confined to a subset of the parameter space known as a “trust region.” Inside each trust region, DAKOTA'S
data sampling methods are used to evaluate the response quantities at a small numbgr'(todéF) of

design points. Next, multidimensional surface fitting is performed to create a surrogate function for each
of the response quantities. Finally, optimization is performed using the surrogate functions in lieu of the
actual response quantities, and the optimizer’s search is limited to the region inside the trust region bounds.
A validation procedure is then applied to compare the predicted improvement in the response quantities
to the actual improvement in the response quantities. Based on the results of this validation, the optimum
design point is either accepted or rejected and the size of the trust region is either expanded, contracted, or
left unchanged. The sequence of optimization subproblems continues until the SBO strategy convergence
criteria are satisfied. More information on the data sampling methods is available in Chapter the

surface fitting methods are described in Chafter

Figure13.11shows a DAKOTA input file that implements surrogate-based optimization on Rosenbrock’s
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function. This input file is namedakota _sbo _rosen.in  in the/Dakota/test directory. The strat-

egy keyword block contains the SBO strategy keywsudrogate _based _opt , plus the commands

for specifying the trust region size and scaling factors. The optimization portion of SBO is specified in the
following keyword blocks fomethod , variables | interface  , andresponses . In SBO, the inter-

face keyword block specifies the type of surface fit method on which the optimizer will operate. The data
sampling portion of SBO is specified in an additional set of keyword blockegthod , interface
andresponses . This example problem uses the Latin hypercube sampling method in the LHS software
to select 10 design points in each trust region. (Note: to use Latin hypercube sampling from DDACE,
swap the comment flags for timond _sampling anddace lhs sections in the input file.) A single
surrogate model is constructed for the objective function using a quadratic polynomial. The initial trust
region is centered at the design pajat, z2) = (0.9,0.9), and extends-0.4 from this point in ther; and

x4 coordinate directions.

If this input file is executed in DAKOTA, it will converge to the optimal design point(at, z2) =

(1,1) in approximately 800 function evaluations. While this solution is correct, it is obtained at

a much higher cost than a traditional gradient-based optimizer (e.g., see the results obtained from
dakota _rosenbrock.in ). The SBO strategy is not intended for use with smooth continuous opti-
mization problems; gradient-based optimization is much more efficient for such applications. Rather, SBO
is best-suited for the types of problems that occur in engineering design where the response quantities may
be discontinuous, nonsmooth, or may have multiple local optiivih [In these types of engineering de-

sign problems, traditional gradient-based optimizers often are ineffective. (For an example problem with
multiple local optima, look inDakota/test for the filedakota _sbo _sine _fcn.in  [35]).

A recently added capability for DAKOTA's SBO strategy is the incorporation of correction factors that
improve the local accuracy of the surrogate models. The correction factors force the surrogate models to
match the true function values, and possibly gradients and Hessians, at the center point of each trust region.
Currently, DAKOTA supports either zeroth-, first-, or second-order accurate correction methods, each of
which can be applied using either an additive, multiplicative, or combined additive/multiplicative function.
The default behavior is that no correction factor is applied.

To visualize how these corrections are applied, consider two cufves), and f;(x), where fs(x) is the
surrogate model for the true functigfa(z). At the center point of each trust regian,, the correction
factor approach creates a third functigifz) that will be used by the optimizer. Note that in SBO with-
out any correction factors, the optimizer operates directlygm). For theadditive zeroth _order
method, the corrected function has the fofte) = f,(z)+[f;(2z.)— fs(z.)]. For themultiplicative

zeroth _order method, the corrected function has the fofitw) = a(z.)fs(z), wherea(z,) =

fi(xze)/ fs(ze). Theadditive first _order correction method, which is based on the work of Lewis
and Nash{€], has the formf(z) = fs(z) + [fi(zc) — fs(xe)] + [Vfi(ze) — V(@) (x — z.). The
multiplicative first _order correction method, which is based on the work of Chang, etdl., [

and Alexandrov, et al,1], has the formf(z) = B(z)f.(x) and uses a scaling functiofi(x), that is
computed using a first-order Taylor Series expangion) = a(z.) + Va(z)T (z — z.).

It should be noted that in both first order correction methods, the fungtishmatches the function value

and gradients off;(x) atz = z.. This property is necessary in proving that the first order-corrected
SBO algorithms are provably convergent to a local minimunf,¢f). However, the first order correction
methods are significantly more expensive than the zeroth order correction methods, since the first order
methods require computing boW¥if;(z.) andV fs(z.). When the SBO strategy is used with either of

the zeroth order correction methods, or with no correction method, convergence is not guaranteed to a
local minimum of f;(z). That is, the SBO strategy becomes a heuristic optimization algorithm. From a
mathematical point of view this is undesirable, but as a practical matter, the heuristic variants of SBO are
often effective in finding local minima.

Usage guidelines: As of April 2003, the DAKOTA team is continuing to test the surface fit SBO
strategy using the various correction factor methods. Thus, no clear-cut guidelines are available. However,
the user should consider the following observations:
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# test file with a specific test. The is used to designate lines

strategy,

method,

model,

variables,

responses,

method,

model,

interface,

responses, \

surrogate_based_opt \

tabular_graphics_data \

max_iterations = 10000 \

opt_method_pointer = 'NLP’ \

trust_region \
initial_size = 0.10 \
minimum_size = 1.0e-6 \
contract_threshold = 0.25 \
expand_threshold = 0.75 \
contraction_factor = 0.50 \
expansion_factor = 1.50

id_method = 'NLP’ \

model_pointer = 'SURROGATE’ \

conmin_frcg, \
max_iterations = 50, \
convergence_tolerance = le-8

id_model = 'SURROGATE’ \
surrogate global \
responses_pointer = 'SURROGATE_RESP’ \
dace_method_pointer = 'SAMPLING’ \
correction additive zeroth_order \
polynomial quadratic \

continuous_design = 2 \
cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor X1 'x2'

3 \
id_responses = 'SURROGATE_RESP’ \
num_objective_functions = 1 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_gradient_step_size = 1.e-6 \
no_hessians

id_method = 'SAMPLING’ \
model_pointer = "TRUTH’ \
nond_sampling \
samples = 10 \
seed = 531 \
sample_type lhs \
all_variables

id_model = "TRUTH’ \

single \
interface_pointer = 'TRUE_FN’ \
responses_pointer = 'TRUE_RESP’

direct \
id_interface = 'TRUE_FN’ \
analysis_driver = 'rosenbrock’

id_responses = 'TRUE_RESP’ \
num_objective_functions = 1 \
no_gradients \
no_hessians \

Figure 13.11: DAKOTA input file for the surrogate-based optimization example.
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e Both the additive zeroth _order and multiplicative zeroth _order correction
methods are “free” since they use valuesfgfr.) that are normally computed by the SBO strat-
egy.

e The use of either theadditive first _order method or the multiplicative

first _order method does not necessarily improve the rate of convergence of the SBO algorithm.

e When using the first order correction methods, TRUEFCNGRADresponse keywords must be
modified (see bottom of Figur3.1]) to allow either analytic or numerical gradients to be computed.
This provides the gradient data needed to compute the correction function.

e For many computationally expensive engineering optimization problems, gradients often are too
expensive to obtain or are discontinuous (or may not exist at all). In such cases the heuristic SBO
algorithm has been an effective approach at identifying optimal desighs [

13.7.2 SBO with Multifidelity Models

SBO can also be applied with multifidelity, or hierarchical, models, i.e., where one has available both a
high-fidelity computational model and a low-fidelity computational model. This situation can occur when
the low-fidelity model neglects some physical phenomena (e.g., viscosity, heat transfer, etc.) that are
included in the high-fidelity model, or when the low-fidelity model has a lower resolution computational
mesh than the high-fidelity model. In many cases, the low-fidelity model can serve as a surrogate for the
high-fidelity model during the optimization process. Thus, the low-fidelity model can be used in SBO in a
manner similar to the use of surface fit models described in Set8ohl A key difference in SBO with
hierarchical surrogates is that a design of experiments using the high-fidelity model is not required; rather
high-fidelity evaluations are only needed at the center of the current trust-region and the predicted optimum
point in order to correct the low-fidelity model and verify improvement, respectively. Another difference

is that one of the four types of correction described in Sect®i.lis required for SBO with multifidelity
models.

A multifidelity test problem namedakota _sbo _hierarchical.in is available ifDakota/test
to demonstrate this SBO approach. This test problem uses the Rosenbrock function as the high fidelity
model and a function named ‘“tbsenbrock” as the low fidelity model. Here,rtisenbrock is a vari-

ant of the Rosenbrock function (sé@akota/test/If _rosenbrock.C  for formulation) with the
minimum point at(x;, z2) = (0.80,0.44), whereas the minimum of the original Rosenbrock function is
(x1,22) = (1,1). Of the four correction approaches, orgditive first _order is successful at

reliably locating the high-fidelity minimum dtx4, z5) = (1, 1) from arbitrary starting points. This likely
results from the fact that the low- and high-fidelity Rosenbrock functions have similar contours and the
additive first _order correction induces less skewing in the contours of the low fidelity model.
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Chapter 14

Surface Fitting Methods

14.1 Overview

DAKOTA contains several types of surface fitting methods that can be used with optimization and uncer-
tainty quantification methods and strategies such as surrogate-based optimization and optimization under
uncertainty. These are: polynomial models (linear, quadratic, and cubic), first-order Taylor series expan-
sion, kriging spatial interpolation, artificial neural networks, and multivariate adaptive regression splines.
All of these surface fitting methods can be applied to problems having an arbitrary number of design pa-
rameters. However, surface fitting methods usually are practical only for problems where there are a small
number of parameters (e.g., a maximum of somewhere in the range of 30-50 design parameters). The
mathematical models created by surface fitting methods have a variety of names in the engineering com-
munity. These include surrogate models, meta-models, approximation models, and response surfaces. For
this manual, the terms surface fit model and surrogate model are used.

14.2 Procedures for Surface Fitting

The surface fitting process consists of three steps: (1) selection of a set of design points, (2) evaluation
of the true response quantities (e.g., from a user-supplied simulation code) at these design points, and
(3) using the response data to solve for the unknown coefficients (e.g., polynomial coefficients, neural
network weights, kriging correlation factors) in the surface fit model. In cases where there is more than
one response quantity (e.g., an objective function plus one or more constraints), then a separate surface is
built for each response quantity. Currently, the surface fit models are built using’6rdyder information

(function values only), although extensions to using higher-order information (gradients and Hessians) are
possible. Each surface fitting method employs a different numerical method for computing its internal
coefficients. For example, the polynomial surface uses a least-squares approach that employs a singular
value decomposition to compute the polynomial coefficients, whereas the kriging surface uses Maximum
Likelihood Estimation to compute its correlation coefficients. More information on the numerical methods
used in the surface fitting codes is provided in the DAKOTA Developers ManGhl [

The set of design points that is used to construct a surface fit model is generated using either the DDACE
software packagesl] or the LHS software packagef]. These packages provide a variety of sampling
methods including Monte Carlo (random) sampling, Latin hypercube sampling, orthogonal array sampling,
central composite design sampling, and Box-Behnken sampling. More information on these software pack-
ages is provided in Chaptér
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14.3 Linear, Quadratic, and Cubic Polynomial Models

Linear, quadratic, and cubic polynomial models are available in DAKOTA. The form of the linear polyno-
mial model is

F(x) ~ o+ Z Cix; (14.1)
i=1

the form of the quadratic polynomial model is:

f(x) ~ co + Z ;T + Z Z Cij ik (14.2)
i=1

i=1 j>i

and the form of the cubic polynomial model is:

f(x) ¢y + Z C;x; + Z Z Cij TiTj5 + Z Z Z CijkX; XXk (14.3)
i=1

i=1 j>i i=1 j>i k>j

In all of the polynomial modelsf (x) is the response of the polynomial model; thex;, x;, terms are the
components of the-dimensional design parameter values; dhec; , ¢;; , ¢;;, terms are the polynomial
coefficients, andh is the number of design parameters. The number of coefficieptgjepends on the
order of polynomial model and the number of design parameters. For the linear polynomial:

Netinear = N+ 1 (14.4)

for the quadratic polynomial:

g = D) 145

and for the cubic polynomial:

34+6n2+11n+6
Neeupic = (n o Nt ) (146)
6
There must be at least. data samples in order to form a fully determined linear system and solve for the
polynomial coefficients. In DAKOTA, a least-squares approach involving a singular value decomposition
numerical method is applied to solve the linear system.

The utility of the polynomial models stems from two sources: (1) over a small portion of the parameter
space, a low-order polynomial model is often an accurate approximation to the true data trends, and (2)
the least-squares procedure provides a surface fit that smooths out noise in the data. For this reason,
the surrogate-based optimization strategy often is successful when using polynomial models, particularly
guadratic models. However, a polynomial surface fit may not be the best choice for modeling data trends
over the entire parameter space, unless it is known a priori that the true data trends are close to linear,
quadratic, or cubic. Seé&{] for more information on polynomial models.

14.4 First-order Taylor Series Models

The first-order Taylor Series model is purely a local approximation method. That is, it provides local trends
in the vicinity of a single point in parameter space. The form of the Taylor Series model is
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f(x) = f(xo0) + (vxﬂx:xU)T(X = Xo) (14.7)

wherex is the current point im-dimensional parameter spagéx,) is the computed response value at
the current point, an¥ . f|x—x, is the computed response gradient at the current point.

In general, the Taylor Series model is accurate only in the region of parameter space that is glpse to

. While the accuracy is limited, the Taylor Series model has the correct value and gradient at the point
xq . This first-order consistency is useful in provably-convergent surrogate-based optimization. The other
surface fitting methods do not use gradient information directly in their models, and these methods rely on
an external correction procedure in order to satisfy the consistency requirements of provably-convergent
SBO.

14.5 Kriging Spatial Interpolation Models

The kriging method uses techniques developed in the geostatistics and spatial statistics communities
([11], [47)) to produce smooth{2-continuous surface fit models of the response values from a set of
data points. The form of the kriging model is

f(x) =B +r"R7Yf - Be) (14.8)

wherex is the current point im-dimensional parameter space; is the estimate of the mean response value,

r is the correlation vector of terms betweerand the data point® is the correlation matrix for all of the

data pointsf is the vector of response values, anid a vector with all values set to one. The terms in the
correlation vector and matrix are computed using a Gaussian correlation function and are dependent on an
n-dimensional vector of correlation parametéps= {6,,...,0,}. In DAKOTA, a Maximum Likelihood
Estimation procedure is performed to compute the correlation parameters for the kriging model. More
detail on this kriging approach may be found #t].

The kriging interpolation model is a nonparametric surface fitting approach. That is, the kriging surface
does not assume that there is an underlying trend in the response data. This is in contrast to the quadratic
polynomial model and the linear Taylor Series model. Since the kriging model is nonparametric, it can be
used to model surfaces with slope discontinuities along with multiple local minima and maxima. Kriging
interpolation is useful for both SBO and OUU, as well as for studying the global response value trends in
the parameter space. This surface fitting method can be constructed using a minimym of design

points_, but it is recommended to use at least, ., design points when possible (refer to Sectign3for
n. definitions).

The kriging model is guaranteed to pass through all of the response data values that are used to construct
the model. Generally, this is a desirable feature. However, if there is considerable numerical noise in the
response data, then a surface fitting method that provides some data smoothing (e.g., quadratic polynomial,
MARS) may be a better choice for SBO and OUU applications. Another feature of the kriging model is
that the predicted response valuééx), decay to the mean valug, whenx is far from any of the data

points from which the kriging model was constructed (i.e., when the model is used for extrapolation). This

is neither a positive nor a negative aspect of kriging, but rather a different behavior than is exhibited by the
other surface fitting methods. One drawback to the kriging model is that data points in close proximity lead
to ill-conditioning in the numerical procedure and the kriging software will terminate if such a situation
occurs. For this reason, the user is advised to avoid sample neuse (_samples = region and

reuse _samples = all specifications) when performing surrogate-based optimization.
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14.6 Atrtificial Neural Network (ANN) Models

The ANN surface fitting method in DAKOTA employs a stochastic layered perceptron (SLP) artificial
neural network based on the direct training approach of Zimmermzan [The SLP ANN method is
designed to have a lower training cost than traditional ANNs. This is a useful feature for SBO and OUU
where new ANNs are constructed many times during the optimization process (i.e., one ANN for each
response function, and new ANNSs for each optimization iteration). The form of the SLP ANN model is

f(x) ~ tanh(tanh((xAg + 60) A1 + 61)) (14.9)

wherex is the current point im-dimensional parameter space, and the teAysiy, A1, 6, are the matri-

ces and vectors that correspond to the neuron weights and offset values in the ANN model. These terms are
computed during the ANN training process, and are analogous to the polynomial coefficients in a quadratic
surface fit. A singular value decomposition method is used in the numerical methods that are employed to
solve for the weights and offsets.

The SLP ANN is a non parametric surface fitting method. Thus, along with kriging and MARS, it can be
used to model data trends that have slope discontinuities as well as multiple maxima and minima. However,
unlike kriging, the ANN surface is not guaranteed to exactly match the response values of the data points
from which it was constructed. This ANN can be used with SBO and OUU strategies. As with kriging,
this ANN can be constructed from fewer thay) . data points, however, itis a good rule of thumb to use

at least,,,, data points when possible.

uwad

14.7 Multivariate Adaptive Regression Spline (MARS) Models

This surface fitting method uses multivariate adaptive regression splines from the MARS3.5 package [
developed at Stanford University. Currently, access to the MARS software is provided through the DDACE
package §4].

The form of the MARS model is based on the following expression:

M
f(X) = Z amBm(X) (1410)
m=1

where thez,, are the coefficients of the truncated power basis functi®psand)M is the number of basis
functions. The MARS software partitions the parameter space into subregions, and then applies forward
and backward regression methods to create a local surface model in each subregion. The result is that
each subregion contains its own basis functions and coefficients, and the subregions are joined together to
produce a smooth;2-continuous surface model.

MARS is a nonparametric surface fitting method and can represent complex multimodal data trends. The
regression component of MARS generates a surface model that is not guaranteed to pass through all of the
response data values. Thus, like the quadratic polynomial model, it provides some smoothing of the data.
The MARS reference material does not indicate the minimum number of data points that are needed to
create a MARS surface model. However, in practice it has been found that atleast and sometimes

as many as 2 to 4 times,_,,, data points are needed to keep the MARS software from terminating.
Provided that sufficient data samples can be obtained, MARS surface models can be useful in SBO and
OUU applications, as well as in the prediction of global trends throughout the parameter space.
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Parallel Computing

15.1 Overview

Parallel computers within the Department of Energy national laboratories have exceeded ten trillion floating
point operations per second (10 TeraFLOPS) and are expected to achieve 100 TeraFLOPS in the near
future. This performance is achieved through the use of massively parallel (MP) procésdiog{ 10%])
processors). In order to harness the power of these machines for performing design, parallel optimization
approaches are needed which are scalable on thousands of processors. To understand the possibilities,
it is instructive to first categorize the opportunities for exploiting parallelism into four main arégs [
consisting of coarse-grained and fine-grained parallelism opportunities within algorithms and their function
evaluations:

1. Algorithmic coarse-grained parallelisnThis parallelism involves the concurrent execution of inde-
pendent function evaluations, where a “function evaluation” is defined as a data request from an al-
gorithm (which may involve value, gradient, and Hessian data from multiple objective and constraint
functions). This concept can also be extended to the concurrent execution of multiple “iterators”
within a “strategy.” Examples of algorithms containing coarse-grained parallelism include:

e Gradient-based algorithmsfinite difference gradient evaluations, speculative optimization,
parallel line search.

e Nongradient-based algorithmgenetic algorithms (GAs), pattern search (PS), Monte Carlo
sampling.

e Approximate methodslesign of computer experiments for building response surface approxi-
mations.

e Concurrent-iterator strategiesoptimization under uncertainty, branch and bound, multi-start
local search, Pareto set optimization, island-model GAs.

2. Algorithmic fine-grained parallelismThis involves computing the basic computational steps of an
optimization algorithm (i.e., the internal linear algebra) in parallel. This is primarily of interest in
large-scale optimization problems and simultaneous analysis and design (SAND).

3. Function evaluation coarse-grained parallelisithis involves concurrent computation of separable
parts of a single function evaluation. This parallelism can be exploited when the evaluation of the re-
sponse data set requires multiple independent simulations (e.g. multiple loading cases or operational
environments) or multiple dependent analyses where the coupling is applied at the optimizer level
(e.g., the individual discipline feasible formulation]).
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4. Function evaluation fine-grained parallelisniThis involves parallelization of the solution steps
within a single analysis code. The DOE laboratories have developed parallel analysis codes in the ar-
eas of nonlinear mechanics, structural dynamics, heat transfer, computational fluid dynamics, shock
physics, and many others.

By definition, coarse-grained parallelism requires very little inter-processor communication and is therefore
“embarrassingly parallel,” meaning that there is little loss in parallel efficiency due to communication as
the number of processors increases. However, it is often the case that there are not enough separable
computations on each algorithm cycle to utilize the thousands of processors available on MP machines. For
example, a thermal safety applicatiof4] demonstrated this limitation with a pattern search optimization

in which the maximum speedup exploitiogly coarse-grained algorithmic parallelism was shown to be
severely limited by the size of the design problem (coordinate pattern search has anrmapendent
evaluations per cycle fot design variables).

Fine-grained parallelism, on the other hand, involves much more communication among processors and
care must be taken to avoid the case of inefficient machine utilization in which the communication de-
mands among processors outstrip the amount of actual computational work to be performed. For example,
a chemically-reacting flow applicatiofi ]] illustrated this limitation for a simulation of fixed size in which

it was shown that, while simulation run time did monotonically decrease with increasing number of pro-
cessors, the relative parallel efficien&yof the computation for fixed model size decreased rapidly (from

E ~ 0.8 at 64 processors tB ~ 0.4 at 512 processors). This was due to the fact that the total amount of
computation was approximately fixed, whereas the communication demands were increasing rapidly with
increasing numbers of processors. Therefore, there is a practical limit on the number of processors that can
be employed for fine-grained parallel simulation of a particular model size, and only for extreme model
sizes (“heroic-scale”) can thousands of processors be efficiently utilized in studies exploiting fine-grained
parallelism alone.

These limitations point us to the exploitation of multiple levels of parallelism, in particular the combination
of coarse-grained and fine-grained approaches. DAKOTA supports a total of three tiers of scheduling and
four levels of parallelism which, in combination, can minimize efficiency losses and achieve near linear
scaling on MP computers. The four levels are:

e concurrent iterators within a strategy (scheduling performed by DAKOTA)
e concurrent function evaluations within each iterator (scheduling performed by DAKOTA)
e concurrent analyses within each function evaluation (scheduling performed by DAKOTA)

e multiprocessor analyses (work distributed by the parallel analysis code)

for which the first two are classified as algorithmic coarse-grained parallelism, the third is function evalua-
tion coarse-grained parallelism, and the fourth is function evaluation fine-grained parallelism. Algorithmic

fine-grained parallelism is not currently supported, although the development of large-scale parallel SAND
techniques is a current research directigln [

A particular application may support one or more of these parallelism types, and DAKOTA provides for
convenient selection and combination of each of the supported levels. If multiple types of parallelism
can be exploited, then the question may arise as to how the amount of parallelism at each level should
be selected so as to maximize the overall parallel efficiency of the study. For performance analysis of
multilevel parallelism formulations and detailed discussion of these issues, refef]tolfi general, it

is recommended that the user employ DAKOTA's automatic parallelism configuration facilities, as these
utilize the recommendations from the aforementioned paper

While development of techniques for high end MP computers is a primary research driver, it is important
to note that DAKOTA's parallel facilities support a broad range of hardware and are equally applicable to
parallel processing on networks of workstations (NOWSs) or desktop multiprocessors. Given the reduced
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scale in these cases, it is more common to exploit only one of the levels of parallelism; however, this can
still be quite effective in reducing the time to obtain a solution.

In the following sections, the parallel algorithms available in this DAKOTA release are listed followed by
descriptions of the software components which enable parallelism, approaches for utilizing these compo-
nents, and input specification and execution details for running parallel DAKOTA studies.

15.2 Parallel Algorithms

In DAKOTA Version 3.1, the following iterators and strategies support algorithmic coarse-grained paral-
lelism.

15.2.1 Parallel iterators

e Gradient-based optimizers: CONMIN, NPSOL, DOT, and OPT++ can all exploit parallelism through
the use of DAKOTA's native finite differencing routine (selected witethod _source dakota
in the responses specification), which will perform concurrent evaluations for each of the parameter
offsets. Fom variables, forward differences result in an+- 1 concurrency and central differences
resultin a&n+ 1 concurrency. In addition, CONMIN, DOT, and OPT++ can use speculative gradient
techniques{] to obtain better parallel load balancing. By speculating that the gradient information
associated with a given line search point will be used later and computing the gradient information in
parallel at the same time as the function values, the concurrency during the gradient evaluation and
line search phases can be balanced. NPSOL does not use speculative gradients since this approach
is superseded by NPSOL's gradient-based line search in user-supplied derivative mode.

e Nongradient-based optimizers: most COLINY methods support parallelism. Serial COLINY
methods include Solis-Wetsd@liny _solis _wets ) and certairexploratory =~ _moves options
(adaptive _pattern andmulti _step ) in pattern searctcliny _pattern _search ). PDS
within OPT++ @ptpp _pds) is also currently serial due to limitations in the OPT++ interface.

e Leastsquares methods: in an identical manner to the gradient-based optimizers, NLSSOL and Gauss-
Newton can exploit parallelism through the use of DAKOTA's native finite differencing routine. In
addition, Gauss-Newton can use speculative gradient techniques to obtain better parallel load bal-
ancing. NLSSOL does not use speculative gradients since this approach is superseded by NLSSOL's
gradient-based line search in user-supplied derivative mode.

e Parameter studies: all parameter study methedstér , list , centered , andmultidim )
support parallelism. These methods avoid internal synchronization points, so all evaluations are
available for concurrent execution.

e Design of experiments: atlace methods grid , random, oas, Ihs , oa_lhs , box _behnken ,
andcentral _composite ) support parallelism.

e Uncertainty  quantification: all  nondeterministic  methods nor(d _sampling ,
nond _analytic  _reliability , and nond _polynomial _chaos) support parallelism.
In the case ofmond _analytic  _reliability , gradient-based optimization is involved and

parallelism can be exploited through the use of DAKOTA's native finite differencing routine.

15.2.2 Parallel strategies

Certain strategies support concurrency in multiple iterator executions. Currently, the strategies which can
exploit this level of parallelism are:
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e Branch and bound
e Pareto-set optimization

e Multi-start iteration

In the branch and bound case, the available iterator concurrency grows as the tree develops more branches,
so some of the iterator servers may be idle in the initial phases. Pareto-set and multi-start, however, have a
fixed set of jobs to perform and should exhibit good load balancing. In a future release, optimization under
uncertainty will be added to the strategies which support concurrent iterator parallelism.

15.3 Local Simulation Invocation Components

This section describes software components which manage simulation invocations local to a processor.
These invocations may be either synchronous (i.e., blocking) or asynchronous (i.e., nonblocking). Syn-
chronous evaluations proceed one at a time with the evaluation running to completion before control is
returned to DAKOTA. Asynchronous evaluations are initiated such that control is returned to DAKOTA
immediately, prior to evaluation completion, thereby allowing the initiation of additional evaluations which
will execute concurrently.

The synchronous local invocation capabilities are used to provide serial execution on a single processor and
also to provide function evaluations local to a processor within DAKOTA's message-passing schedulers.
The asynchronous local invocation capabilities can be used by themselves to provide a simple parallelism
which relies on external means to assign jobs to processors, or they can be combined with DAKOTA's
message-passing schedulers to provide a hybrid parallelism. Refer to Sectdor additional details.

In most cases, blocking schedulers are used for the management of sets of asynchronous local evaluations,
in which all jobs in the queue are completed before exiting the scheduler and returning the set of results
to the algorithm. Nonblocking asynchronous local schedulers are also available for the case of fully asyn-
chronous algorithms which do not contain synchronization points (e.g., the APPS algorithm). In this case,
jobs may come and go from the queue without the enforcement of a hard synchronization point.

DAKOTA supports three approaches to local simulation invocation based on the direct function, system
call, and fork application interfaces. For each of these cases, an input filter, one or more analysis drivers,
and an output filter make up the interface, as described in Segon

15.3.1 Direct function synchronization

The direct function capability may be used synchronously. Synchronous operation of the direct function
application interface involves a standard procedure call to the input filter, if present, followed by calls to
one or more simulations, followed by a call to the output filter, if present. Each of these components must
be linked as functions within DAKOTA. Control does not return to the calling code until the evaluation is
completed and the response object has been populated.

Asynchronous operation will be supported in the future and will involve the use of multithreading (e.g.,
POSIX threads) to accomplish multiple simultaneous simulations. When spawning a thread (e.g., using
pthread _create ), control returns to the calling code after the simulation is initiated. In this way,
multiple threads can be created simultaneously. An array of responses corresponding to the multiple threads
of execution would then be recovered in a synchronize operation (e.g.,pthigad _join ).

15.3.2 System call synchronization

The system call capability may be used synchronously or asynchronously. In both casmstéhe
utility from the standard C library is used. Synchronous operation of the system call application interface
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involves spawning the system call (containing the filters and analysis drivers bound together with paren-
theses and semi-colons) in the foreground. Control does not return to the calling code until the simulation
is completed and the response file has been written. In this case, the possibility of a race condition (see be-
low) does not exist and any errors during response recovery will cause an immediate abort of the DAKOTA
process (note: detection of the string “fail” is not a response recovery error; see Ct@pter

Asynchronous operation involves spawning the system call in the background, continuing with other tasks
(e.g., spawning other system calls), periodically checking for process completion, and finally retrieving the
results. An array of responses corresponding to the multiple system calls is recovered in a synchronize
operation.

In this synchronize operation, completion of a function evaluation is detected by testing for the existence
of the evaluation’s results file using tiséat utility [46]. Care must be taken when using asynchronous
system calls since they are prone to the race condition in which the results file passes the existence test but
the recording of the function evaluation results in the file is incomplete. In this case, the read operation
performed by DAKOTA will result in an error due to an incomplete data set. In order to address this
problem, DAKOTA contains exception handling which allows for a fixed number of response read failures
per asynchronous system call evaluation. The number of allowed failures must have a limit, so that an
actual response format error (unrelated to the race condition) will eventually abort the system. Therefore,
to reduce the possibility of exceeding the limit on allowable read failutes,user’s interface should
minimize the amount of time an incomplete results file exists in the directory where its status is being
tested This can be accomplished through two approaches: (1) delay the creation of the results file until the
simulation computations are complete and all of the response data is ready to be written to the results file,
or (2) perform the simulation computations in a subdirectory, and as a last step, move the completed results
file into the main working directory where its existence is being queried.

If concurrent simulations are executing in a shared disk space, then care must be taken to maintain in-
dependence of the simulations. In particular, the parameters and results files used to communicate with
DAKOTA, as well as any other files used by this simulation, must be protected from other files of the same
name used by the other concurrent simulations. With respect to the parameters and results files, these files
may be made unique through the use offflee _tag option (e.g.params.in.1 , results.out.1 ,

etc.) or the default UNIX temporary file option (e.éuar/tmp/aaaOb2Mfv , etc.). However, if addi-

tional simulation files must be protected (emggdel.i , model.o , model.g , model.e , etc.), then an
effective approach is to create a tagged working subdirectory for each simulation instance. S&dtion
provides an example system call interface that demonstrates both the use of tagged working directories and
the relocation of completed results files to avoid the race condition.

15.3.3 Fork synchronization

The fork capability is quite similar to the system call; however, it has the advantage that asynchronous fork
invocations can avoid the results file race condition that may occur with asynchronous system calls. The
fork interface invokes the filters and analysis drivers usingftie andexec family of functions, and
completion of these processes is detected usingvtie family of functions. Sincewvait is based on a
process id handle rather than a file existence test, an incomplete results file is not an issue.

Depending on the platform, the fork application interface executes eitferla or afork call. These

calls generate a new child process with its own UNIX process identification number, which functions as a
copy of the parent process (dakota). xecvp function is then called by the child process, causing it

to be replaced by the analysis driver or filter. For synchronous operation, the parent dakota process then
awaits completion of the forked child process through a blocking calkitpid . On most platforms, the
fork/lexec  procedure is efficient since it operates in a copy-on-write mode, and no copy of the parent is
actually created. Instead, the parents address space is borrowed uetiéthéunction is called.

Thefork/exec  behavior for asynchronous operation is similar to that for synchronous operation, the
only difference being that dakota invokes multiple simulations througtictkdexec  procedure prior
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to recovering response results for these jobs usingvilie function. The combined use &drk/exec
andwait functions in asynchronous mode allows the scheduling of a specified humber of concurrent
function evaluations and/or concurrent analyses.

15.4 Message Passing Components

DAKOTA uses a “single program-multiple data” (SPMD) parallel programming model. It uses message-
passing routines from the Message Passing Interface (MPI) staritddydq”Z] to communicate data be-

tween processors. The SPMD designation simply denotes that the same DAKOTA executable is loaded
on all processors during the parallel invocation. This differs from the MPMD model (“multiple program-
multiple data”) which would have the DAKOTA executable on one or more processors communicating
directly with simulator executables on other processors. The MPMD model has some advantages, but het-
erogeneous executable loads are not supported by all parallel environments. Moreover, the MPMD model
requires simulation code intrusion on the same order as conversion to a subroutine, so the subroutine con-
version in a direct-linked SPMD model is preferred.

15.4.1 Partitioning of levels

DAKOTA uses MPI communicators to identify groups of processors. The glstElLCOMMVORLD
communicator provides the total set of processors allocated to the DAKOTA MPI_COMMVORLD

can be partitioned into new intra-communicators which each define a set of processors to be used for
a multiprocessor server. Each of these servers may be further partitioned to nest one level of paral-
lelism within the next. At the lowest parallelism level, these intra-communicators can be passed into a
simulation for use as the simulation’s computational context, provided that the simulation has been de-
signed, or can be modified, to be modular on a communicator (i.e., it does not assume ownership of
MPI_COMMVORLP New intra-communicators are created with @1_Commsplit  routine, and in

order to send messages between these intra-communicators, new inter-communicators are created with
calls to MPI_Intercomm _create . To minimize overhead, DAKOTA creates new intra- and inter-
communicators only when the parent communicator provides insufficient context for the scheduling at
a particular level. In addition, communicator partitions can be reallocated multiple times. This enables
dynamic repatrtitioning for a strategy that manages multiple iterators and models (e.qg., four 256 processor
servers could be used for iteration on a lower fidelity model, followed by two 512 processor servers for
subsequent iteration on a higher fidelity model). In DAKOTA, communicator partitioning schemes are al-
located and deallocated for each iterator/model pair within those strategies for which multi-fidelity models
may be present (e.g., the multilevel optimization strategy described in S&&ign

Each tier within DAKOTAs nested parallelism hierarchy can use either
of two processor partitioning models: a “dedicated master” partitioning
Frep— D i i in which a single processor is dedicated to scheduling operations and the
# remaining processors are split into server partitions, or a “peer partition”
approach in which the loss of a processor to scheduling is avoided. These
CrT— /\ models are depicted in Figufiés.1 The peer partition is desirable since it
A utilizes all processors for computation; however, it requires either the use
‘ <—> of sophisticated mechanisms for distributed scheduling or a problem for
(0 Pce P which static scheduling of concurrent work performs well (Sebeduling
within levelsbelow). To recursively partition the subcommunicators of Fig-
Figure 15.1: Communicatorure15.1, COMM1/2/3 in the dedicated master or peer partition case would
partitioning models. be further subdivided using the appropriate partitioning model for the next
lower level of parallelism.

a) Dedicated Master
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15.4.2 Scheduling within levels

The following scheduling approaches are available within each level:

¢ Self-schedulingin the dedicated master model, the master processor manages a single processing
queue and maintains a prescribed number of jobs (usually one) active on each slave. Once a slave
server has completed a job and returned its results, the master assigns the next job to this slave.
Thus, the slaves themselves determine the schedule through their job completion speed. This pro-
vides a simple dynamic scheduler in that heterogeneous processor speeds and/or job durations are
naturally handled, provided there are sufficient instances scheduled through the servers to balance
the variation.

e Static scheduling if scheduling is statically determined at start-up, then no master processor is
needed to direct traffic and a peer partitioning approach is applicable. If the static schedule is a good
one (ideal conditions), then this approach will have superior performance. However, heterogeneity,
when not knowna priori, can very quickly degrade performance since there is no mechanism to
adapt.

In addition, the following scheduling approach is provided by PICO for the scheduling of concurrent opti-
mizations within the branch and bound strategy:

¢ Distributed schedulingin this approach, a peer partition is used and each peer maintains a separate
queue of pending jobs. When one peer’s queue is smaller than the other queues, it requests work from
its peers (prior to idleness). In this way, it can adapt to heterogeneous conditions, provided there
are sufficient instances to balance the variation. Each partition performs communication between
computations, and no processors are dedicated to scheduling. Furthermore, it distributes scheduling
load beyond a single processor, which can be important for large numbers of concurrent jobs (whose
scheduling might overload a single master) or for fault tolerance (avoiding a single point of failure).
However, it involves relatively complicated logic and additional communication for queue status and
job migration, and its performance is not always superior since a partition can become work-starved
if its peers are locked in computation (Note: this logic can be somewhat simplified if a separate
thread can be created for communication and migration of jobs).

DAKOTA is designed to allow the freedom to configure each
tevel 1 Zever 2 Leve 3 parallelism level with either the dedicated master partition/self-
ET_CON_ORLD optcomn cvatcoms scheduling combination or the peer partition/static scheduling
combination. In addition, certain external libraries may pro-
vide additional options (e.g., PICO supports distributed schedul-

v ing in peer partitions). As an example, Figut®.2 shows
e in which a branch and bound strategy employs peer
CEE cn a case In w . e
ED L] z EEE partition/distributed scheduling at level 1, each optimizer par-
00 O tition employs concurrent function evaluations in a dedicated

0 @ master partition/self-scheduling model at level 2, and each
function evaluation partition employs concurrent multiproces-

. ) . I sor analyses in a peer partition/static scheduling model at
Elegsligzli{rzaﬁgﬁgrl:swe partitioning for o1 '3 1y this caseMPI COMMVORLDs subdivided into
P ' optCOMM1/2/3/.../ 71, eachoptCOMMs further subdivided

into evalCOMMO (master) andevalCOMM1/2/3/.../ Ty

(slaves), and each slaegal COMMis further subdivided intanal COMM1/2/3/.../ T3.

Currently, each message passing scheduler is blocking, in that all jobs in the queue are completed be-
fore exiting the scheduler and returning the set of results to the algorithm. Nonblocking message-passing
schedulers are under development for the case of fully asynchronous algorithms which do not contain
synchronization points (e.g., the APPS algorithm).
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15.5 Putting the Components Together

The asynchronous local approaches described in Setfid@can be considered to rely axternal

scheduling mechanisms, since it is generally the operating system or some external queue/load sharing
software that allocates jobs to processors. Conversely, the message-passing approaches described in Sec-
tion 15.4rely oninternal scheduling mechanisms to distribute work among processors. These components
provide building blocks which can be combined in a variety of ways to manage parallelism at multiple
levels. At one extreme, DAKOTA can execute on a single processor and rely completely on external means
to map all jobs to processors (i.e., using asynchronous local approaches). At the other extreme, DAKOTA
can execute on many processors and manage all levels of parallelism, including the parallel simulations,
using completely internal approaches (i.e., using message passing at all levels as il Eiguré/hile
all-internal or all-external approaches are common cases, many additional approaches exist between the
two extremes in which some parallelism is managed internally and some is managed externally.

single-proc.
DAKOTA

job1& job2& job3 & jobd &

These combined approaches are referred thyasid parallelism,
since the internal distribution of work based on message-passing is
being combined with external allocation using asynchronous local
approaches. Figurg5.3depicts the asynchronous local, message-
passing, and hybrid approaches for a dedicated-master partition.
Approaches (b) and (c) both use MPI message-passing to distribute
work from the master to the slaves, and approaches (a) and (c) both

manage asynchronous jobs local to a processor. The hybrid ap-

(a) asynchronous local

proach (c) can be seen to be a combination of (a) and (b) since jobs
are being internally distributed to slave servers through message-
Job jeb2 job3  job4 passing and each slave server is managing multiple concurrent jobs
(b) message-passing using an asynchronous local approach. From a different perspec-
tive, one could consider (a) and (b) to be special cases within the
€D range of configurati i :
ge of configurations supported by (c). The hybrid approach is
i I i I useful for supercomputers that maintain a service/compute node
lobs& Jobs& jops& Jebs&  djstinction and for supercomputers or networks of workstations
(2 hybrid that involve clusters of symmetric multiprocessors (SMPs). In the
service/compute node case, concurrent multiprocessor simulations
Figure 15.3: External, internal, anthre |aunched into the compute nodes from the service node parti-
hybrid job management. tion. While an asynchronous local approach from a single service
node would be sufficient, spreading the application load by running
DAKOTA in parallel across multiple service nodes results in better performafice If the number of
concurrent jobs to be managed in the compute partition exceeds the number of available service nodes, then
hybrid parallelism is the preferred approach. In the case of a cluster of SMPs, message-passing can be used
to communicate between SMPs, and asynchronous local approaches can be used within an SMP. Hybrid
parallelism can again result in improved performance, since the total number of DAKOTA MPI processes
is reduced in comparison to a pure message-passing approach.

Hybrid parallelism approaches can take several forms when used in the multilevel parallel context. A
conceptual boundary can be considered to exist for which all parallelism above the boundary is man-
aged internally using message-passing and all parallelism below the boundary is managed externally using
asynchronous local approaches. Hybrid parallelism approaches can then be categorized based on whether
this boundary between internal and external management occurs within a parallelismnieadkeyel)

or between two parallelism levelgfer-leve). In the intra-level case, the jobs for the parallelism level
containing the boundary are scheduled using a hybrid scheduler, in which a capacity multiplier is used for
the number of jobs to assign to each server. Each server is then responsible for concurrently executing
its capacity of jobs using an asynchronous local approach. In the inter-level case, one level of parallelism
manages its parallelism internally using a message-passing approach and the next lower level of parallelism
manages its parallelism externally using an asynchronous local approach. That is, the jobs for the higher
level of parallelism are scheduled using a standard message-passing scheduler, in which a single job is as-
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Table 15.1: Support of job management approaches within parallelism levels and application interfaces

Parallelism Level Asynchronous Local | Message Passing Hybrid
strategyl/iterators X
iterator/function evaluations X X X
(system, fork) (system, fork, direct) (system, fork)
function evaluation/analyses X X X
(fork only) (system, fork, direct) (fork only)
fine-grained parallel analysis X

signed to each server. However, each of these jobs has multiple components, as managed by the next lower
level of parallelism, and each server is responsible for executing these sub-components concurrently using
an asynchronous local approach. For example, consider a multiprocessor DAKOTA run which involves an
iterator scheduling a set of concurrent function evaluations across a cluster of SMPs. A hybrid parallelism
approach will be applied in which message-passing parallelism is used between SMPs and asynchronous
local parallelism is used within each SMP. In the hybrid intra-level case, multiple function evaluations
would be scheduled to each SMP, as dictated by the capacity of the SMPs, and each SMP would manage
its own set of concurrent function evaluations using an asynchronous local approach. Any lower levels of
parallelism would be serialized. In the hybrid inter-level case, the function evaluations would be scheduled
one per SMP, and the analysis components within each of these evaluations would be executed concurrently
using asynchronous local approaches within the SMP. Thus, the distinction can be viewed as whether the
concurrent jobs on each server in FigaeX reflect the same level of parallelism as that being scheduled

by the master (intra-level) or one level of parallelism below that being scheduled by the master (inter-level).

Table15.1shows a matrix of the supported job management approaches for each of the parallelism levels
and each of the application interfaces. The concurrent iterator and multiprocessor analysis parallelism
levels can only be managed with message-passing approaches. In the former case, this is due to the fact
that a separate process or thread for an iterator is not currently supported. The latter case reflects a finer
point on the definition of external parallelism management. While a multiprocessor analysis can most
certainly be launched (usingpirun /yod) from one of DAKOTA's analysis drivers, resulting in a parallel
analysis external to DAKOTA, this parallelism is not visible to DAKOTA and therefore does not qualify as
parallelism that DAKOTA manages (and therefore is notincluded in THRI®. The concurrent evaluation

and analysis levels can be managed either with message-passing, asynchronous local, or hybrid techniques,
with the exceptions that the direct interface does not support asynchronous operations (asynchronous local
or hybrid) at either of these levels and the system call interface does not support asynchronous operations
(asynchronous local or hybrid) at the concurrent analysis level. The direct interface restrictions are present
since multithreading in not yet supported and the system call interface restrictions result from the inability

to manage concurrent analyses within a nonblocking function evaluation system call.

15.6 Running a Parallel DAKOTA Job

15.6.1 Single-processor execution

The command for running DAKOTA on a single-processor and exploiting asynchronous local parallelism
is the same as for running DAKOTA on a single-processor for a serial study, e.g.:

dakota -i dakota.in > dakota.out

See Sectior2.1.5for additional information on single-processor command syntax.
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15.6.2 Multiprocessor execution

Running a DAKOTA job on multiple processors requires the use of an executable loading facility such as
mpirun oryod. On a network of workstations, thepirun script is used to initiate a parallel DAKOTA
job, e.g.:

mpirun -np 12 dakota -i dakota.in > dakota.out
mpirun -machinefile machines -np 12 dakota -i dakota.in > dakota.out

where both examples specify the use of 12 processors, the former selecting them from a default system
resources file and the latter specifying particular machines in a machine file&3(3éer[details).

On a massively parallel computer such as ASCI Red, similar facilities are available from the Cougar oper-
ating system via thgod executable loading facility:

yod -sz 512 dakota -i dakota.in > dakota.out

In both thempirun andyod cases, MPlI command line arguments are used by MPI (extracted first in
the call toMPI_Init ) and DAKOTA command line arguments are used by DAKOTA (extracted second
by DAKOTAs command line handler). An issue that can arise with these command line arguments is
that the mpirun script distributed with MPICH has been observed to have problems with certain file path
specifications (e.g., a relative path such atsséme _file ”). These path problems are most easily
resolved by using local linkage (all referenced files or soft links to these files appear in the same directory).

Finally, when running on computer resources that employ NQS/PBS batch schedulers, the single-processor
dakota command syntax or the multiprocessopirun command syntax might be contained within an
executable script file which is submitted to the batch queue. For example, on Cplant, the command

gsub -l size=512 run_dakota
could be submitted to the PBS queue for execution. On ASCI Red, the NQS syntax is similar:
gsub -q snl -IP 512 -IT 6:00:00 run_dakota

These commands allocate 512 compute nodes for the study, and execuie tidekota script on a
service node. If this script contains a single-proceskiota command, then DAKOTA will execute

on a single service node from which it can launch parallel simulations into the compute nodes using
analysis drivers that contaypd commands (anyod executions occurring at any level underneath the
run _dakota script are mapped to the 512 compute node allocation). If the script submitjedtiocon-

tains a multiprocessanpirun command, then DAKOTA will execute across multiple service nodes so
that it can spread the application load in either a message-passing or hybrid parallelism approach. Again,
analysis drivers containingod commands would be responsible for utilizing the 512 compute nodes.
And, finally, if the script submitted tgsub contains ayod of the dakota executable, then DAKOTA

will execute directly on the compute nodes and manage all of the parallelism internally (notgdldaba

this type without agsub would be mapped to the interactive partition, rather than to the batch partition).

15.7 Specifying Parallelism

Given an allotment of processors, DAKOTA contains logic based on the theoretical watg in putomat-

ically determine an efficient parallel configuration, consisting of partitioning and scheduling selections for
each of the parallelism levels. This logic accounts for problem size, the concurrency supported by particu-
lar iterative algorithms, and any user inputs or overrides. The following points are important components
of the automatic configuration logic which can be helpful in estimating the total number of processors to
allocate and in selecting configuration overrides:
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¢ If the capacity of the servers in a peer configuration is sufficient to schedule all jobs in one pass,
then a peer partition and static schedule will be selected. If this capacity is not sufficient, then a
dedicated-master partition and dynamic schedule will be used. These selections can be overridden
with self/static scheduling request specifications for the concurrent iterator, evaluation, and analysis
parallelism levels. For example, if it is known that processor speeds and job durations have little
variability, then overriding the automatic configuration with a static schedule request could eliminate
the unnecessary loss of a processor to scheduling.

e With the exception of the concurrent-iterator parallelism level (iterator executions tend to have high
variability in duration), concurrency is pushed up. That is, available processors will be assigned to
concurrency at the higher parallelism levels first. If more processors are available than needed for
concurrency at a level, then the server size is increased to support concurrency in the next lower level
of parallelism. This process is continued until all available processors have been assigned. These
assignments can be overridden with a servers specification for the concurrent iterator, evaluation,
and analysis parallelism levels and with a processors per analysis specification for the multiprocessor
analysis parallelism level. For example, if it is desired to parallelize concurrent analyses within each
function evaluation, then avaluation  _servers = 1 override would serialize the concurrent
function evaluations level and assure processor availability for concurrent analyses.

In the following sections, the user inputs and overrides are described, followed by specification examples
for single and multi-processor DAKOTA executions.

15.7.1 The interface specification

Specifying parallelism within an interface can involve the use of thsynchronous ,
evaluation _concurrency , and analysis _concurrency  keywords to specify concurrency
local to a processor (i.e., asynchronous local parallelism). d$ymchronous specification has dual
uses:

e When running DAKOTA on a single-processor, tasynchronous keyword specifies the use
of asynchronous invocations local to the processor (these jobs then rely on external means to be
allocated to other processors). The default behavior is to simultaneously launch all function evalu-
ations available from the iterator as well as all available analyses within each function evaluation.
In some cases, the default behavior can overload a machine or violate a usage policy, resulting
in the need to limit the number of concurrent jobs usingekieluation  _concurrency and
analysis _concurrency specifications.

e When executing DAKOTA across multiple processors and managing jobs with a message-
passing scheduler, thesynchronous keyword specifies the use of asynchronous invocations
local to each server processor, resulting in a hybrid parallelism approach (see SeExfpn
In this case, the default behavior is one job per server, which must be overridden with an
evaluation  _concurrency  specification and/or aanalysis _concurrency  specification.

When a hybrid parallelism approach is specified, the capacity of the servers (used in the automatic
configuration logic) is defined as the number of servers times the number of asynchronous jobs per
server.

In addition, evaluation _servers evaluation _self _scheduling , and
evaluation _static _scheduling keywords can be used to override the automatic parallelism con-
figuration for concurrent function evaluatiorsalysis  _servers ,analysis _self _scheduling ,

and analysis _static _scheduling keywords can be used to override the automatic parallelism
configuration for concurrent analyses; and fhiecessors _per _analysis  keyword can be used to
override the automatic parallelism configuration for the size of multiprocessor analyses. Each of these
keywords appears as part of the interface commands specification in the DAKOTA Reference M@gnual [
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15.7.2 The strategy specification

To specify concurrency in iterator executions, the iterator  _servers
iterator  _self _scheduling , and iterator  _static _scheduling keywords are used to
override the automatic parallelism configuration. See the strategy commands specification in the DAKOTA
Reference Manuall[/] for additional information.

15.7.3 Single-processor DAKOTA specification

Specifying a single-processor DAKOTA job that exploits parallelism through asynchronous local ap-
proaches (see FigurEs.3&) requires inclusion of thasynchronous keyword in the interface speci-
fication. Once the input file is defined, single-processor DAKOTA jobs are executed using the command
syntax described previously in Sectibf.6.1

Example 1

For example, the following specification runs an NPSOL optimization which will perform asynchronous
finite differencing:

method, \
npsol_sqgp

variables, \
continuous_design = 5 \
cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
cdv_lower_bounds  0.15 0.02 0.05 0.1 0.1 \
cdv_upper_bounds 20 20 20 20 20

interface, \
application system, \
asynchronous \
analysis_drivers = 'text_book’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \
interval_type central \
method_source dakota \
fd_step_size = 1.0E-4 \
no_hessians

Note thatmethod _source dakota selects DAKOTA’s internal finite differencing routine so that the
concurrency in finite difference offsets can be exploited. In this case, central differencing has been selected
and 11 function evaluations (one at the current point plus two offsets in each of five variables) can be
performed simultaneously for each NPSOL response request. These 11 evaluations will be launched with
system calls in the background and presumably assigned to additional processors through the operating
system of a multiprocessor compute server or other comparable method. The concurrency specification
may be included if it is necessary to limit the maximum number of simultaneous evaluations. For example,
if a maximum of six compute processors were available, the command

evaluation_concurrency = 6 \

should be added to thresynchronous  specification in the preceding example.
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Example 2

If, in addition, multiple analyses can be executed concurrently within a function evaluation (e.g., from

multiple load cases or disciplinary analyses that must be evaluated to compute the response data set), then

an input specification similar to the following could be used:

method, \
npsol_sqgp
variables, \
continuous_design = 5 \
cdv_initial_point 0.2 0.05 0.08 0.2 0.2 \
cdv_lower_bounds 0.15 0.02 0.05 0.1 0.1 \

cdv_upper_bounds 20 20 20 20 20

interface, \
application fork \
asynchronous \
evaluation_concurrency = 6 \
analysis_concurrency = 3 \

analysis_drivers = ‘text_book1’ ‘text_book2' ‘text_book3’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_step_size = l.e-4 \
no_hessians

In this case, the default concurrency with justasynchronous specification would be all 11 func-

tion evaluations and all 3 analyses, which can be limited byeWeduation _concurrency and
analysis _concurrency specifications. The input file above limits the function evaluation concur-
rency, but not the analysis concurrency (a specification of 3 is the default in this case and could be omitted).
Changing the input tevaluation  _concurrency = 1  would serialize the function evaluations, and
changing the input tanalysis _concurrency = 1  would serialize the analyses.

15.7.4 Multiprocessor DAKOTA specification

In multiprocessor executions, server evaluations are synchronous (Figuit® by default and the
asynchronous keyword is only used if a hybrid parallelism approach (FigseX) is desired. Multi-
processor DAKOTA jobs are executed using the command syntax described previously in $&g&ian

Example 3

To run Example 1 using a message-passing approaclasgmehronous keyword would be removed
(since the servers will execute their evaluations synchronously), resulting in the following interface speci-
fication:

interface, \
application system, \
analysis_drivers = ’'text_book’

Running DAKOTA on 4 processors (syntaxpirun -np 4 dakota -i dakota.in ) would result
in the following parallel configuration report from the DAKOTA output:
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DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 4 peer/static
concurrent evaluations 3 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

The dedicated master partition and self-scheduling algorithm are automatically selected for the concurrent
evaluations parallelism level since the number of function evaluations (11) is greater than the maximum
capacity of the servers (4). Since one of the processors is dedicated to being the master, only 3 processors
are available for computation and the 11 evaluations can be completed in approximately 4 passes through
the servers. If it is known that there is little variability in evaluation duration, then this logic could be over-
ridden to use a static schedule through use oftlauation  _static _scheduling  specification:

interface, \
application system, \
evaluation_static_scheduling \
analysis_drivers = ’'text_book’

Running DAKOTA again on 4 processors (syntaxpirun -np 4 dakota -i dakota.in ) would
now result in this parallel configuration report:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

Now the 11 jobs will be statically distributed among 4 peer servers, since the processor previously dedicated
to scheduling has been converted to a compute server. This will likely be more efficient if the evaluation
durations are sufficiently similar.

As a related example, consider the case where each of the workstations used in the parallel execution
has multiple processors. In this case, a hybrid parallelism approach which combines message-passing
parallelism with asynchronous local parallelism (see Figissk) would be a good choice. To specify

hybrid parallelism, one uses the saasynchronous specification as was used for the single-processor
examples, e.g.:

interface, \
application system \
asynchronous evaluation_concurrency = 3 \
analysis_drivers = ‘text_book’

With 3 function evaluations concurrent on each server, the capacity of a 4 processor DAKOTA execution
(syntax: mpirun -np 4 dakota -i dakota.in ) has increased to 12 evaluations. Since all 11
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jobs can now be scheduled in a single pass, a static schedule is automatically selected (without any override
request):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 4 peer/static
concurrent evaluations 4 1 peer/static
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A
Total parallelism levels = 1

Example 4

To run Example 2 using a message-passing approachsstmehronous specification is again removed:

interface, \
application fork \
analysis_drivers = ‘text_bookl’ ‘text_book2’ ‘text_book3’

Running this example on 6 processors (syntenpirun -np 6 dakota -i dakota.in ) would
result in the following parallel configuration report:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 6 peer/static
concurrent evaluations 5 1 ded. master/self
concurrent analyses 1 1 peer/static
multiprocessor analysis 1 N/A N/A

Total parallelism levels = 1

in which all of the processors have been assigned to the function evaluation concurrency (due to the “push
up” automatic configuration logic). To assign some of the available processors to the concurrent analysis
level, the following input could be used:

interface, \
application fork \
analysis_drivers = ‘text_book1’ ‘text_book2’ ‘text_book3’ \
evaluation_static_scheduling \

evaluation_servers = 2

which results in the following 2-level parallel configuration:

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
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concurrent iterators 1 6 peer/static
concurrent evaluations 2 3 peer/static
concurrent analyses 3 1 peer/static
multiprocessor analysis 1 N/A N/A
Total parallelism levels = 2

The six processors available have been split into two evaluation servers of three processors each, where the
three processors in each evaluation server manage the three analyses, one per processor.

Next, consider the following 3-level parallel case, in whitdxt _bookl, text _book2, and

text _book3 from the previous examples now execute on two processors each. In this case, the
processors _per _analysis keyword is added and tHerk interface is changed todirect inter-

face since the fine-grained parallelism of the three simulations is managed internally:

interface, \
application direct \
analysis_drivers = ‘text_bookl1’ ‘text_book2’ ‘text_book3’ \
evaluation_static_scheduling \
evaluation_servers = 2 \
processors_per_analysis = 2

This results in the following parallel configuration for a 12 processor DAKOTA run
(syntax:mpirun -np 12 dakota -i dakota.in ):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 1 12 peer/static
concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 3

An important point to recognize is that, since each of the parallel configuration inputs has been tied to the
interface specification up to this point, these parallel configurations can be reallocated for each interface in
a multi-iterator/multi-model strategy. For example, a DAKOTA execution on 40 processors might involve
the following two interface specifications:

interface, \
application direct, \

id_interface = 'COARSE’ \
analysis_driver = ’'siml’ \

processors_per_analysis = 5

interface, \
application direct, \
id_interface = 'FINE’ \
analysis_driver = ’'sim2’ \

processors_per_analysis 10

for which the coarse model would employ 8 servers of 5 processors each and the fine model would employ
4 servers of 10 processors each.
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Next, consider the following 4-level parallel case that employs the Pareto set optimization strategy. In
this casejterator ~ _servers anditerator  _static _scheduling requests are included in the
strategy specification:

strategy, \
pareto_set \
iterator_servers = 2 \
iterator_static_scheduling \
opt_method_pointer = 'NLP’ \

random_weight_sets = 4

Adding this strategy specification to the input file from the previous 12 processor example results in the
following parallel configuration for a 24 processor DAKOTA run
(syntax:mpirun -np 24 dakota -i dakota.in ):

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 2 12 peer/static
concurrent evaluations 2 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A
Total parallelism levels = 4

Example 5

As a final example, consider a multi-start optimization conducted on 384 processors of ASCI Red. A job
of this size must be submitted to the batch queue, using syntax similar to:

gsub -q snl -IP 384 -IT 6:00:00 run_dakota
where therun _dakota script appears as

#!/bin/sh

date

cd /scratch/tmp_5/mseldre

yod -sz 384 dakota -i dakota.in > dakota.out

date

and the strategy and interface specifications frond#ieta.in  input file appear as

strategy, \
multi_start \
method_pointer = 'CPS’ \
iterator_servers = 8 \
random_starts = 8
interface, \
application direct, \
analysis_drivers = ’'text_bookl1’ 'text_book2' ’'text_book3’ \
evaluation_servers = 8 \
evaluation_static_scheduling \

processors_per_analysis = 2
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The resulting parallel configuration is reported as

DAKOTA parallel configuration:

Level num_servers procs_per_server partition/schedule
concurrent iterators 8 48 peer/static
concurrent evaluations 8 6 peer/static
concurrent analyses 3 2 peer/static
multiprocessor analysis 2 N/A N/A

Total parallelism levels = 4

Since the concurrency at each of the nested levels has a multiplicative effect on the number of processors
that can be utilized, it is easy to see how large numbers of processors can be put to effective use in reducing
the time to reach a solution, even when, as in this example, the concurrency per level is relatively low.
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Advanced Simulation Code Interfaces

16.1 Building an Interface to a Engineering Simulation Code

To interface an engineering simulation package to DAKOTA using one of the black-box interfaces (system
call or fork), pre- and post-processing functionality typically needs to be supplied (or developed) in order
to transfer the parameters from DAKOTA to the simulator input file and to extract the response values of
interest from the simulator’s output file for return to DAKOTA (see Figliéel). This is often managed
through the use of a UNIX C-shell], Bourne shell [], or Perl [5€] driver script. While these are common
choices, it is important to recognize that any executable file can be used. If the user prefers, the desired pre-
and post-processing functionality may also be provided by an executable compiled from any programming
language.

Under the/Dakota/GettingStarted/RosenSimulator directory, a simple example uses the
Rosenbrock test function as a mock simulator. Several scripts have been included to provide ways to ac-
complish the pre and post-processing needs. Each simulator package has different pre- and post-processing
requirements, and as such, this example serves only to demonstrate the issues associated with interfacing a
simulator. Modifications will almost surely be required for any particular application.

16.1.1 Review of RosenSimulator Files

The RosenSimulator directory contains four important fikskota _rosenbrock.in (the DAKOTA
input file), simulator ~ _script  (the simulation driver scriptdprepro (a pre-processing utility), and
templatedir/ros.template (a template simulation input file).

Thedakota _rosenbrock.in file specifies the study that DAKOTA will perform and, in the interface
section, describes the components to be used in performing function evaluations. In particular, it identifies
simulator  _script  asitsanalysis _driver , as shown in Figuré6.1

Thesimulator  _script listed in Figurel6.2is a short C-shell driver script that DAKOTA executes to
perform each function evaluation. The names of the parameters and results files are passed to the script
on its command line so that they can be referenced internal to the script by the vadafgell] and

$argv[2] , respectively. Theimulator _script is divided into five parts: set up, pre-processing,
analysis, post-processing, and clean up.

The set up portion strips the function evaluation number féamgv[1] and assigns it to the shell variable
$num, which is then used to create a tagged working directory for a particular evaluation. For example,
on the first evaluation, 1” is stripped from ‘params.in.1 " in order to create Workdir.1 ". The

primary reason for creating separate working directories is so that the files associated with one simulation
do not conflict with those for another simulation. This is particularly important when executing concurrent
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# DAKOTA INPUT FILE - dakota_rosenbrock.in

# This sample Dakota input file optimizes the Rosenbrock function.
# See p. 95 in Practical Optimization by Gill, Murray, and Wright.
#

npsol_sqgp

variables, \
continuous_design = 2 \
cdv_initial_point ~ -1.0 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor 'x1’ 'x2'

interface, \
system, \

# asynchronous \
analysis_driver = ’simulator_script’ \
parameters_file = 'params.in’ \
results_file = ’results.out’ \
file_tag \
file_save \
aprepro

responses, \
num_objective_functions 1 \
numerical_gradients \
fd_gradient_step_size = .000001 \
no_hessians

Figure 16.1: Thelakota _rosenbrock.in input file.
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#l/bin/csh -f

# Sample simulator to Dakota system call script

# See User Manual for instructions

#

# bvbw 10/24/01

# slb 09/20/05

# S$argv[l] is params.in.(fn_eval_num) FROM Dakota
# $argv[2] is results.out.(fn_eval_num) returned to Dakota
H e

# Set up working directory

H e

set num = ‘echo $argv[l] | cut -¢c 11-

cp -r templatedir workdir.$num
mv $argv[1] workdir.$num
cd workdir.$num

# Use the following line if SNL's APREPRO utility is used instead
# of dprepro.
# .laprepro -c ¥ -q --nowarning ros.template ros.in

../dprepro $argv[1] ros.template ros.in

grep 'Function value’ ros.out | cut -c 18- >! $argv[2]

# NOTE: moving $argv[2] at the end of the script avoids any
# problems with read race conditions.

mv $argv[2] ../

cd ..
\rm -rf workdir.$num

Figure 16.2; Thesimulator  _script sample driver script.
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simulations in parallel (to actually run DAKOTA in parallel, uncomment &synchronous line in

dakota _rosenbrock.in ). Once executing within the confines of the working directory, tags on the

files are no longer necessary, and for this reason, the tagged parameters file is moved to a more convenient
name of tHakota _vars .

In the pre-processing portion, treémulator _script  utilizes dprepro , which is a parsing util-

ity used to extract the current variable values from a parameters dd&ota _vars ) and then
insert them into the simulator template input fileog.template ) to create a new input file
(ros.in ) for the simulator. Internal to Sandia, the APREPRO utility is often used for this pur-
pose. For external sites where APREPRO is not available, the DPREPRO utility mentioned above
is an alternative with many of the capabilities of APREPRO that is distributed with DAKOTA (in
/Dakota/GettingStarted/RosenSimulator/dprepro ). Additionally, the BPREPRO utility

is a capable alternative to APREPRO (s@d]), and at Lockheed Martin sites, the JPrepro utility is avail-
able as a JAVA pre- and post-processor][ The dprepro  script partially listed in Figurel6.3 pro-

vides a pre-processing capability and will be used here for simplicity of discussion. It can use either
DAKOTAs aprepro parameters file format (see Sectii6.2 or DAKOTA's standard format {/alue

tag "), so one of these options must be selected in the interface section of the DAKOTA input file. The
ros.template file listed in Figurel6.4is a template simulation input file which contains targets for the
incoming variable values, identified by the stringg }" and “{x2 }". These identifiers match the variable
descriptors specified idakota _rosenbrock.in . The template input file is contrived as Rosenbrock
has nothing to do with finite element analysis; it only mimics a finite element code in order to demon-
strate the simulator template process. dpeepro script will search the simulator template input file for
fields marked with the curly brackets and then create a newrfiei( ) by replacing these targets with

the corresponding numerical values for the variables. As noted in the usage informatdprdpro ,

the DAKOTA parameters file (fakota _vars "), template file name (os.template ") and generated
input file (“ros.in ") must be specified in the arguments for it.

The third part of the script executes thresenbrock _bb simulator. The input and output
file names,ros.in  and ros.out , respectively, are hard-coded into the FORTRAN 77 program
rosenbrock _bb.f . When therosenbrock _bb simulator is executed, the values ot and x2

are read in fronros.in , the Rosenbrock function is evaluated, and the function value is written out
toros.out

The fourth part performs the post-processing and returns the response results to DAKOTA. Using the UNIX
“grep " utility, the particular response values of interest are extracted from the raw simulator output and
saved tdbargv[2] , which in the case of the first evaluation i®5ults.out.1 ". This results file is

moved up one level, out of the working directory, so that DAKOTA may retrieve it. Note that moving the
completed results file up a level at the end of the evaluation avoids any problems with read race conditions
(see Sectioni5.3.2.

Finally, in the clean up phase, the working directory is removed to reduce the amount of disk storage
required to execute the study. If data from each simulation needs to be saved, this step can be commented
out by inserting a#” character before\rm -rf .

As an example, consider function evaluation 60. @hkota _vars file for this evaluation consists of:

{ DAKOTA_VARS =2}

{ x1 = 1.6379575982e-01 }

{ x2 = 2.1962319919e-02 }

{ DAKOTA_FNS =1}

{ ASV_1 = 1}
{ DAKOTA_DER_VARS = 2 }

{ DVV_1 = 1}
{ DV _2 = 2}
{ DAKOTA_AN_COMPS = 0 }

This file indicates that there are two variables and one response function (an objective function) and pro-
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#!/usr/bin/perl

DPREPRO: A Perl pre-processor for manipulating input files with DAKOTA.

Copyright (c) 2001, Sandia National Laboratories.
This software is distributed with DAKOTA under the GNU GPL.
For more information, see the README file in the top Dakota directory.

Usage: dprepro parameters_file template_input_file new_input_file

Reads the variable tags and values from the parameters_file and then
replaces each appearance of "{tag}" in the template_input_file with

its associated value in order to create the new_input_file. The
parameters_file written by DAKOTA may either be in standard format
(using "value tag" constructs) or in "aprepro" format (using

"{ tag = value }" constructs), and the variable tags used inside
template_input_file must match the variable descriptors specified in

the DAKOTA input file. Supports assignments and numerical expressions
in the template file, and the parameters file takes precedence in

the case of duplicate assignments (so that template file assignments
can be treated as defaults to be overridden).

HHHFHFHHFHFHFHHHHFHEH R

# Check for correct number of command line arguments and store the filenames.
ifl @ARGV = 3 ) {
print STDERR "Usage: dprepro parameters_file template_input_file ",
"new_input_file\n";

exit(-1);
}
$params_file = $ARGV[0]; # DAKOTA parameters file in APREPRO format
$template_file = SARGVI[1]; # template simulation input file
$new_file = $ARGV[2]; # new simulation input file with insertions

# Regular expressions for numeric fields

$e = "2(2N\d+H\.2\d*\.\d+)[eEdD](?:\\+[-)?\d+"; # exponential notation

$f = "2A\dH\\\dH[-?\ W+ # floating point

$i = "A\d+ # integer

$Sui = "\d+", # unsigned integer
$n = "$e|$fl$i; # numeric field

HHHHHHH AR
# Process DAKOTA parameters file
HH I

# Open parameters file for input.
open (DAKOTA_PARAMS, "<$params_file") || die "Can’t open $params_file: $!";

Figure 16.3: Partial listing of théprepro  script.
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Title of Model:

Rosenbrock black box

*

*

* Description: This

* Input:

x1 and x2
* Qutput: objective function value

Fkk Fkk * *

is an input file to the Rosenbrock black box
Fortran simulator. This simulator is structured so
as to resemble the input/output from an engineering
simulation code, even though Rosenbrock’s function
is a simple analytic function. The node, element,
and material blocks are dummy inputs.

node
node
node
node
node
node
node
node

1
2
3
4
5
6
7

8

element
element
element
element
material
material
variable
variable 2 {x2}

end

location 0.0
location 0.0
location 1.0
location 1.0
location 2.0
location 2.0
location 3.0
location 3.0
1 nodes 1
2 nodes 3
3 nodes 5
4 nodes 7
1 elements
2 elements
1 {x1}

0.0
1.0
0.0
1.0

Figure 16.4: Listing of theos.template file
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vides new values for variabled andx2 and an active set vector (ASV) with a single valuelofThe
ASYV indicates the need to return the value of the objective function for these parameters (seedSéction

The dprepro  script reads the variable values from thdakota _vars file, namely
1.6379575982e-01 and 2.1962319919e-02 for x1 and x2 respectively, and substitutes
them in the{x1 } and{x2 } fields of theros.template file. The final three lines of the resulting input
file (ros.in ) then appear as follows:

variable 1 1.6379575982e-01
variable 2 2.1962319919e-02
end

where all other lines are identical to the template file. Tdésenbrock _bb simulator acceptsos.in
as its input file and generates the following output to therfikeout

Beginning execution of model: Rosenbrock black box
Set up complete.

Reading nodes.

Reading elements.

Reading materials.

Checking connectivity...OK

Input value for x1 = 0.1637957598200000E+00
Input value for x2 = 0.2196231991900000E-01

Computing solution...Done

Function value = .70160603837323165521E+00

It is the user’s responsibility to extract the appropriate data from the raw simulator output and return the
desired data set to the results file. This step is relatively trivial in this case, and we gseghandcut

utilities to extract the value from the last line of thas.out  output file and save it t8argv[2] , which

is theresults.out.60 file for this evaluation. This single value provides the objective function value
requested by the ASV.

Figure16.5shows the final solution from DAKOTA using thiesenbrock _bb simulator.

16.1.2 Adapting These Scripts to Another Simulation

To adapt this approach for use with another simulator, several steps need to be performed:

1. Create a template simulator input file by identifying the fields in an existing input file that correspond
to the variables of interest and then replacing them Wijtidentifiers (e.g{varl }, {var2 }, etc.)
which match the DAKOTA variable descriptors. Copy this template input file to a templatedir that
will be used to create working directories for the simulation.

2. Modify thedprepro arguments irsimulator  _script  to reflect names of the DAKOTA param-
eters file (previously dakota _vars "), template file name (previouslyrés.template ") and
generated input file (previouslyds.in ). Alternatively, use APREPRO, BPREPRO or JPrepro to
perform this step.

3. Modify the analysis section gimulator  _script  to replace theosenbrock _bb function call
with the new simulator name and command line syntax, including the input and output file names.
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Exit NPSOL - Optimal solution found.
Final nonlinear objective value =  0.1177903E-06

NPSOL exits with INFORM code = O (see "Interpretation of output” section
in NPSOL manual)

NOTE: see Fortran device 9 file (fort.9 or ftn09)
for complete NPSOL iteration history.

<<<<< lterator npsol_sgp completed.
<<<<< Function evaluation summary: 132 total (132 new, O duplicate)
<<<<< Best parameters =
9.9965683296e-01 x1
9.9931326685e-01 x2
<<<<< Best objective function =
1.1779032904e-07
<<<<< Best data captured at function evaluation 130
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.26 [parent = 0.26, child = 0]
Total wall clock = 38.044

Figure 16.5: DAKOTA output for RosenSimulator problem.

4. Change the post-processing sectiorsimulator  _script  to reflect the revised extraction pro-
cess. At a minimum, this would involve changing theep command to reflect the name of the
output file, the string to search for, and the characters to cut out of the captured output line. For more
involved post-processing tasks, invocation of additional tools may have to be added to the script.

5. Modify the dakota _rosenbrock.in input file to reflect, at a minimum, the initial values,
bounds, and tags in the variables specification and the number of objectives and constraints in the
responses specification.

These nonintrusive interfacing approaches can be used to rapidly interface with simulation codes. While
generally custom for each new application, typical interface development time is on the order of an hour or

two. Thus, this approach is scalable when dealing with many different application codes. Weaknesses of
this approach include the potential for loss of data precision (if care is not taken to preserve precision in pre-
and post-processing file I/0O), a lack of robustness in post-processing (if the data capture is too simplistic),
and scripting overhead (only noticeable if the simulation time is on the order of a second or less).

If the application scope at a particular site is more focused and only a small number of simulation codes
are of interest, then more sophisticated interfaces may be warranted. For example, the economy of scale
afforded by a common simulation framework justifies additional effort in the development of a high quality
DAKOTA interface. In these cases, more sophisticated interfacing approaches could involve a more thor-
oughly developed black box interface with robust support of a variety of inputs and outputs, or it might
involve intrusive interfaces such as the direct application interface discussed in Sécfland the SAND
interface to be available in future releases.

16.1.3 Additional Examples

A variety of additional examples of black-box interfaces to simulation codes are maintained in the
/Dakota/Applications directory in the source code distribution.
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16.2 Adding Simulations to the Direct Application Interface

If a high performing interface to a simulation is desired or the computer architecture cannot accommodate
separate optimization and simulation processes (e.g., due to batch submission requirements on large parallel
computers), the simulation code can be directly linked into DAKOTA as a subroutine. This is an advanced
capability of DAKOTA, and it requires a user to have access to (and knowledge of) the DAKOTA source
code, as well as the source code of the simulation code.

In order to use the direct function capability with a new simulation (or new internal test function), the
following steps have to be performed:

1. The functions to be invoked (analysis programs, input and output filters) must have their main pro-
grams changed into callable functions/subroutines. If it is practical to introduce a dependence on
DAKOTA data types, then these functions/subroutines can directly use the following prototype:

int function_name(const DakotaVariables& vars,
const DakotalntArray& asv, DakotaResponse& response)

If it is desired to avoid this data dependence, then a wrapper function with the same prototype should
be added to the DirectFnApplicinterface class in order to provide data mappings (see Salinas and
ModelCenter wrappers as examples).

2. Theif-else blocks in thderived_map_if() , derived_map_ac(), andderived_map_of() member func-
tions of theDirectFnApplicinterface classmust be extended to include the new function names with
the proper prototypes. If the new function names are not members DietFnApplicinterface
class then arextern declaration may additionally be needed.

3. The DAKOTA system must be recompiled and linked with the new function object files or libraries.

Various header files may have to be included, particularly withinDliectFnApplicinterface class, in
order to recognize new external functions and compile successfully. Refer to the DAKOTA Develop-
ers Manual [ g] for additional information on th®irectFnApplicinterface class and the DAKOTA data

types.
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DAKOTA Usage Guidelines

17.1 Problem Exploration

The first objective in an analysis is to characterize the problem so that appropriate algorithms can be chosen.
In the case of optimization, typical questions that should be addressed include: Are the design variables
continuous, discrete, or mixed? Is the problem constrained or unconstrained? How expensive are the
response functions to evaluate? Will the response functions behave smoothly as the design variables change
or will there be nonsmoothness and/or discontinuities? Are the response functions likely to be multimodal,
such that global optimization may be warranted? Is analytic gradient data available, and if not, can |
calculate gradients accurately and cheaply? Additional questions that are pertinent for characterization of
uncertainty quantification problems include: Can | accurately model the probabilistic distributions of my
uncertain variables? Are the response functions relatively linear? Am | interested in a full random process
characterization of the response functions, or just statistical results?

If there is not sufficient information from the problem description to answer these questions, then additional
problem characterization activities may be warranted. One particularly useful characterization activity that
DAKOTA enables is parameter space exploration through the use of parameter studies and design of exper-
iments methods. The parameter space can be systematically interrogated to create sufficient information to
evaluate the trends in the response functions and to determine if these trends are noisy or smooth, unimodal
or multimodal, relatively linear or highly nonlinear, etc. In addition, the parameter studies may reveal that
one or more of the parameters do not significantly affect the results and can be removed from the prob-
lem formulation. This can yield a potentially large savings in computational expense for the subsequent
studies. Refer to Chapt&and Chaptep for additional information on parameter studies and design of
experiments methods.

17.2 Optimization Method Selection

In selecting an optimization method, important considerations include the type of variables in the prob-
lem (continuous, discrete, mixed), whether a global search is needed or a local search is sufficient, and
the required constraint support (unconstrained, bound constrained, nonlinearly constrained). Less obvious,
but equally important, considerations include the efficiency of convergence to an optimum (i.e., conver-
gence rate) and the robustness of the method in the presence of challenging design space features (e.g.,
nonsmoothness).

Gradient-based optimization methods are highly efficient, with the best convergence rates of all of the
optimization methods. If analytic gradient and Hessian information can be provided by an application code,
a full Newton method will provide quadratic convergence rates near the solution. More commonly, only
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gradient information is available and a quasi-Newton method is chosen in which the Hessian information
is approximated from an accumulation of gradient data. In this case, superlinear convergence rates can be
obtained. These characteristics make gradient-based optimization methods the methods of choice when the
problem is smooth and well-behaved. However, when the problem exhibits nonsmooth, discontinuous, or
multimodal behavior, these methods can also be the least robust since inaccurate gradients will lead to bad
search directions, failed line searches, and early termination.

Thus, for gradient-based optimization, a critical factor is the gradient accuracy. Analytic gradients are
ideal, but are rarely available. For many engineering applications, a finite difference method will be used
by the optimization algorithm to estimate gradient values. DAKOTA allows the user to select the step size
for these calculations, as well as a choice between forward-difference and central-difference algorithms.
The finite difference step size should be selected as small as possible, to allow for local accuracy and
convergence, but not so small that the steps are “in the noise.” This requires an assessment of the local
smoothness of the response functions using, for example, a parameter study method. Central-differencing,
in general, will produce more reliable gradients than forward differencing, but at twice the expense.

Nongradient-based methods exhibit much slower convergence rates for finding an optimum, and as a re-
sult, tend to be much more computationally demanding than gradient-based methods. Nongradient local
optimization methods, such as pattern search algorithms, often require from several hundred to a thousand
or more function evaluations, depending on the number of variables, and nongradient global optimization
methods such as genetic algorithms may require from thousands to tens-of-thousands of function evalu-
ations. Clearly, for nongradient optimization studies, the computational cost of the function evaluation
must be relatively small in order to obtain an optimal solution in a reasonable amount of time. In ad-
dition, nonlinear constraint support in nongradient methods is an open area of research and is not yet
available in DAKOTA. However, nongradient methods can be more robust and more inherently parallel
than gradient-based approaches. They can be applied in situations were gradient calculations are too ex-
pensive or unreliable. In addition, some nongradient-based methods can be used for global optimization
which gradient-based techniques, by themselves, cannot. For these reasons, nongradient-based methods
deserve consideration when the problem may be nonsmooth or poorly behaved.

An approach which attempts to bring the efficiency of gradient-based optimization methods to nonsmooth
or poorly behaved problems is the surrogate-based optimization (SBO) strategy. This technique can smooth
noisy or discontinuous response results through use of a data fit surrogate model (e.g., a quadratic polyno-
mial) and then optimize on the smooth surrogate using efficient gradient-based techniques. 1Se¢tion
provides further information on this approach. In addition, the multilevel hybrid and multistart optimiza-
tion strategies can address a similar goal of bringing the efficiency of gradient-based optimization methods
to global optimization problems. In the former case, a global optimization method can be used for a few
cycles to locate promising regions and then local gradient-based optimization is used to efficiently con-
verge on one or more optima. In the latter case, a stratification technique is used to disperse a series of
local gradient-based optimization runs through parameter space. S&8tiand Sectiornl3.3 provide

more information on these approaches.

Table17.1provides a convenient reference for choosing an optimization method or strategy to match the
characteristics of the user’s problem. With respect to constraint support, it should be understood that the
methods with more advanced constraint support are also applicable to the lower constraint support levels;
they are listed only at their highest level of constraint support for brevity.

17.3 UQ Method Selection

The need for computationally efficient methods is further amplified in the case of the quantification of
uncertainty in computational simulations. Sampling-based methods are the most robust uncertainty tech-
niques available, are applicable to almost all simulations, and possess rigorous error bounds; consequently,
they should be used whenever the function is relatively inexpensive to compute. However, in the case of
terascale computational simulations, the number of function evaluations required by traditional techniques
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Table 17.1: Guidelines for optimization method selection.

Variable Function Solution Constraints Applicable Methods
Type Surface Type
continuous| smooth local unconstrained optpp.cg
bound constrained | dotbfgs, dotfrcg, conminfrcg
nonlinearly npsolsqgp, reducedqp,
constrained dot mmfd, dotslp, dotsgp,
conminmfd,
optpp.newton, optppg-newton,
optppfd_newton
local least nonlinearly nissolsgp, optppg_newton
squares constrained
local large- nonlinearly (planned: reducedqp for
scale constrained SAND)
global nonlinearly multi_level opt strategy
constrained multi_start opt strategy
nonsmooth local unconstrained coliny_solis wets
bound constrained coliny_patternsearch,
coliny_apps, optppds
nonlinearly constrained (planned: colinyapps,
coliny_patternsearch)
local/global nonlinearly surrogatebasedopt strategy
constrained
global bound constrained coliny_ea
nonlinearly (planned: colinyea)
constrained
discrete n/a global bound constrained coliny_ea
mixed smooth local nonlinearly branchandbound opt strategy|
constrained (noncategorical variables only,
nonsmooth global bound constrained coliny_ea
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Table 17.2: Guidelines for UQ method selection.

Method Desired Problem Applicable Methods
Classification Characteristics
Sampling response functions are| nondsampling (Monte Carlo or LHS

relatively inexpensive
Analytic reliability | scalar response function nondanalyticreliability (MV, AMV,

that is reasonably well AMV+, FORM, SORM)
behaved
Stochastic finite representation of full nondpolynomialchaos
elements random variable/process/

field is desired

such as Monte Carlo and Latin hypercube sampling (LHS) quickly becomes prohibitive. One way to al-
leviate this problem is to employ more advanced sampling strategies, such as Quasi-Monte Carlo (QMC)
sampling, importance sampling (IS), or Markov Chain Monte Carlo (MCMC) sampling, and these tech-
nigues are currently under investigation.

Alternatively, one can apply the traditional sampling techniques to a surrogate function approximating the
expensive computational simulation. However, if this approach is selected, the user should be aware that it
is very difficult to assess the accuracy of the results obtained. Unlike in the case of SBO (seel3edtion

there is no simple pointwise calculation to verify the accuracy of the approximate results. This is due

to the functional nature of uncertainty quantification, i.e. the accuracy of the surrogate over the entire
parameter space needs to be considered not just around a candidate optimum as in the case of SBO. This
issue especially manifests itself when trying to estimate low probability events such as catastrophic failure
of a system.

Another class of methods, the analytical reliability methods (MV, AMV, AMV+, FORM/SORM), are more
computationally efficient in general than the sampling methods and are effective when applied to reasonably
well-behaved response functions, such as linear, mildly nonlinear, and monotonic functions. The user
should be aware that these methods do not possess rigorous error estimates as they also involve response
surface approximations. Also, they are usually applied only in the scalar response case. Finally, since
they rely on gradient calculations, issues with nonsmoothness and poorly behaved response functions are
relevant concerns. However, in the case of a small number of uncertain variables, the methods can often
be used to provide qualitative sensitivity information concerning which uncertain variables are important
with relatively few function evaluations.

The final class of UQ methods available in DAKOTA are stochastic finite elements techniques using poly-
nomial chaos expansions, which are general purpose techniques provided that the response functions pos-
sess finite second order moments. Further, these methods approximate the full random process/field rather
than just approximating statistics such as mean and standard deviation. This class of methods parallels
traditional variational methods in mechanics; in that vein, efforts are underway to compute rigorous error
bounds of the approximations produced by the methods. Another strength of the these methods is their
potential use in a multiphysics environment as a means to propagate the uncertainty through a series of
simulations while retaining as much information as possible at each stage of the analysis. On the other
hand, these methods currently rely on the use of traditional sampling techniques in the construction of the
approximations; consequently, they are computational very expensive in the case of terascale applications.

The recommendations for UQ methods are summarized in Tabke
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Table 17.3: Guidelines for parameter study and design of experiments method selection.

Method
Classification

Applications

Applicable Methods

parameter study

sensitivity analysis,
directed parameter spag
investigations

e

centeredparameterstudy,
list_parameterstudy,
multidim_parametesstudy,
vector parametesstudy

design of computet
experiments

main effects analysis,

space filling designs
(parameters are

uniformly distributed)

dace (grid, random, oas, |hs, s,
box_behnken, centratomposite)

sampling

space filling designs
(parameters have gener

a

probability distributions)

nondsampling (Monte Carlo or LHS
with all_variables flag

17.4 Parameter Study/DACE/Sampling Method Selection

Parameter studies, design/analysis of computer experiments (DACE), and sampling methods share the
purpose of exploring the parameter space. If directed studies with a defined structure are desired, then
parameter study methods (see Cha@eare recommended. For example, a quick assessment of the
smoothness of a response function is best addressed with a vector parameter study. Also, performing local
sensitivity analysis is best addressed with these methods. If, however, a global space-filling set of samples
is desired, then the DACE and sampling methods are recommended (see @hapherse techniques are

useful for scatter plot and main effects analysis as well as surrogate model construction. The distinction
between DACE and sampling is drawn based on the distributions of the parameters. Design of experiments
methods typically assume uniform distributions, whereas the sampling approaches in DAKOTA support
a broad range of probability distributions. To usend _sampling
(as opposed to an uncertainty quantification mode)athe_variables

method specification of the DAKOTA input file.

These method selection recommendations are summarized inTlaBle

in a design of experiments mode
flag should be included in the
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Chapter 18

Restart Capabilities and Utilities

18.1 Restart Management

DAKOTA was developed for solving problems that require multiple calls to computationally expensive
simulation codes. In some cases you may want to conduct the same optimization, but to a finer final
convergence tolerance. This would be costly if the entire optimization analysis had to be repeated. In-
terruptions imposed by computer usage policies, power outages, and system failures could also result in
costly delays. However, DAKOTA automatically records the variable and response data from all function
evaluations so that new executions of DAKOTA can pick up where previous executions left off.

The DAKOTA restart file (e.g.dakota.rst ) is written in a portable binary format. The portability
derives from use of the XDR standard.

To write a restart file using a particular name, theite  _restart command line input (may be abbre-
viated asw) is used:

dakota -i dakota.in -write_restart my_restart_file

If no -write _restart  specification is used, then DAKOTA will write a restart file using the default
namedakota.rst

To restart DAKOTA from a restart file, theead _restart command line input (may be abbreviated as
-r ) is used:

dakota -i dakota.in -read_restart my_restart_file

If no -read _restart  specification is used, then DAKOTA will not read restart information from any
file (i.e., the default is no restart processing).

If the -write  _restart and-read _restart specifications identify the same file (including the case
where-write  _restart  is not specified andread _restart identifiesdakota.rst ), then new
evaluations will be appended to the existing restart file. If-tiiéte _restart and-read _restart
specifications identify different files, then the evaluations read from the file identifigedy _restart

are first written to the-write _restart file. Any new evaluations are then appended to the
-write  _restart file. In this way, restart operations can be chained together indefinitely with the assur-
ance that all of the relevant evaluations are present in the latest restart file.

To read in only a portion of a restart file, thretop _restart  control (may be abbreviated &s) is used.

Note that the integer value specified refers to the number of entries to be read from the database, which
may differ from the evaluation number in the previous run (e.g., if any duplicates were detected since these
duplicates are not recorded in the restart file). In the casesibp _restart  specification, it is usually
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desirable to specify a new restart file usivgrite _restart  so as to remove the records of erroneous
or corrupted function evaluations. For example, to read in the first 50 evaluationsl&tata. rst

dakota -i dakota.in -read_restart dakota.rst \\
-stop_restart 50 -write_restart dakota_new.rst

Thedakota _new.rst file will contain the 50 processed evaluations frdakota.rst as well as any
new evaluations. All evaluations following the 80n dakota.rst have been removed from the latest
restart record.

DAKOTA's restart algorithm relies on its duplicate detection capabilities. Processing a restart file populates
the list of function evaluations that have been performed. Then, when the study is restarted, it is started
from the beginning (not a “warm” start) and many of the function evaluations requested by the iterator are
intercepted by the duplicate detection code. This approach has the primary advantage of restoring the com-
plete state of the iteration (including the ability to correctly detect subsequent duplicates) for all iterators
and multi-iterator strategies without the need for iterator-specific restart code. However, the possibility ex-
ists for numerical round-off error to cause a divergence between the evaluations performed in the previous
and restarted studies. This has been extremely rare to date.

Usage: "dakota_restart_util to_neutral <restart file> <neutral_file>"
"dakota_restart_util from_neutral <neutral_file> <restart_file>"
"dakota_restart_util to_pdb <restart_file> <pdb_file>"

"dakota_restart_util to_tabular <restart_file> <text file>"
"dakota_restart_util remove <double> <old_restart_file> <new_restart_file>"
"dakota_restart_util remove_ids <int_1> ... <int_n> <old_restart_file>
<new_restart_file>"

"dakota_restart_util cat <restart_file_1> ... <restart_ file_n>
<new_restart_file>"

18.2 The DAKOTA Restart Utility

The DAKOTA restart utility program provides a variety of facilities for managing restart files from
DAKOTA executions. The executable program nanmdgikota _restart _util and it has the following
options, as shown by the usage message returned when executing the utility without any options:

Several of these functions involve format conversions. In particular, the binary format used for restart
files can be converted to ASCII text and printed to the screen, converted to and from a neutral file format,
converted to a PDB format for use at Lawrence Livermore National Laboratory, or converted to a tabular
format for importing into 3rd-party graphics programs. In addition, a restart file with corrupted data can be
repaired by value or id and multiple restart files can be combined to create a master database.

18.2.1 Print

Theprint  option is quite useful for interrogating the contents of a particular restart file, since the binary

format is not convenient for direct inspection. The restart data is printed in full precision, so that exact
matching of points is possible for restarted runs or corrupted data removals. For example, the following
command

dakota_restart_util print dakota.rst

results in output similar to the following (from tleyl _head example problem):
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Function evaluation 1 from restart file:

1.8000000000000000e+00 intake _dia

1.0000000000000000e+00 flatness
Active set vector = {1111}

-2.4355973813000000e+00 f1

-4.7428486676999998e-01 2

-4.5000000000000001e-01 f3

1.3971143170000000e-01 f4

Function evaluation 2 from restart file:

1.8001800000000001e+00 intake _dia
1.0000000000000000e+00 flatness
Active set vector = {1111
-2.4356759411000000e+00 f1
-4.7425991059000000e-01 f2
-4.5000000000000001e-01 f3
1.3971143170000000e-01 f4
<<omission>>

All function evaluations will be printed to the screen, so piping this output into more, e.g.
dakota_restart_util print dakota.rst | more

or redirecting the output to a file, e.g.
dakota_restart_util print dakota.rst > dakota.txt

may be needed to manage the output.

18.2.2 To/From Neutral File Format

A DAKOTA restart file can be converted to a neutral file format using a command like the following:
dakota_restart_util to_neutral dakota.rst dakota.neu

which results in a report similar to:

Writing neutral file dakota.neu
Restart file processing completed: 65 evaluations retrieved.

Similarly, a neutral file can be returned to binary format using a command like the following:
dakota_restart_util from_neutral dakota.neu dakota.rst
which results in a report similar to:

Reading neutral file dakota.neu
Writing new restart file dakota.rst
Neutral file processing completed: 65 evaluations retrieved.

The contents of the generated neutral file are similar to the following (froraythehead example prob-
lem):
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Fundamental 2 1.8000000000000000e+00 intake _dia 1.0000000000000000e+00 flatness
0000O00O0
NULL 2 4101111 -2.4355973813000000e+00 -4.7428486676999998e-01
-4.5000000000000001e-01 1.3971143170000000e-01 1
Fundamental 2 1.8001800000000001e+00 intake _dia 1.0000000000000000e+00 flatness
000O0O00O
NULL 2 4101111 -24356759411000000e+00 -4.7425991059000000e-01
-4.5000000000000001e-01 1.3971143170000000e-01 2
Fundamental 2 1.7998200000000000e+00 intake _dia 1.0000000000000000e+00 flatness
000O0O00O
NULL 2 4101111 -2.4355188216000001e+00 -4.7430978909999999¢e-01
-4.5000000000000001e-01 1.3971143170000000e-01 3

<<omission>>

This format is not intended for direct viewingrint  should be used for this purpose). Rather, the neutral

file capability has been used in the past for managing portability of restart data across platforms. Recent
use of the XDR standard for portable binary formats has eliminated this need, and neutral file conversions
may be phased out in future releases.

18.2.3 To Tabular Format

Conversion of a binary restart file to a tabular format enables convenient import of this data into 3rd-
party post-processing tools such as Matlab, TECplot, Excel, etc. This facility is nearly identical to the
tabular _graphics _data option in the DAKOTA input file specification (described in Sectiog),

but with two important differences:

1.

2. No function evaluations are suppressed as they are tafiblar _graphics _data (i.e., any
internal finite difference evaluations are included).

3. The conversion can be performed posthumously, i.e., for DAKOTA runs executed previously.
An example command for converting a restart file to tabular format is:
dakota_restart_util to_tabular dakota.rst dakota.m
which results in a report similar to:

Writing tabular text file dakota.m
Restart file processing completed: 10 evaluations retrieved
and history of 5 attributes recorded.

The contents of the generated tabular file are similar to the following (taken frotextmok example

problem):
% eval_id x1 X2 fl f2 3
1 0.9 1.1 0.0002 0.26 0.76
2 0.6433962264 0.6962264151 0.0246865569 0.06584549663 0.1630331079
3 0.5310576935 0.5388046558 0.09360081618  0.01261994596  0.02478161032
4 0.612538853 0.6529854907 0.03703861037 0.04871110112 0.1201206246
5 0.5209215947 0.5259311717 0.1031862798 0.008393722022 0.01614279999
6 0.5661606434 0.5886684401 0.06405197568  0.02620365411  0.06345021064
7 0.5083873357 0.510239856 0.1159458957 0.00333775509 0.006151042806
8 0.5001577143 0.5001800249 0.1248312163 6.772666378e-05 0.000101200204
9 0.5000000547 0.5000000597 0.1249999428  2.4865003e-08 3.238000351e-08
10 0.5 0.5 0.125 0 0
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18.2.4 Concatenation of Multiple Restart Files

In some instances, it is useful to combine restart files into a single master function evaluation database.
For example, when constructing a data fit surrogate model, data from previous studies can be pulled in and
reused to create a combined data set for the surrogate fit. An example command for concatenating multiple
restart files is:

dakota_restart_util cat dakota.rst.1 dakota.rst.2 dakota.rst.3 dakota.rst.all
which results in a report similar to:

Writing new restart file dakota.rst.all

dakota.rst.1 processing completed: 10 evaluations retrieved.
dakota.rst.2 processing completed: 110 evaluations retrieved.
dakota.rst.3 processing completed: 65 evaluations retrieved.

Thedakota.rst.all database now contains 185 evaluations and can be read in for use in a subsequent
DAKOTA study using theread _restart  option to thedakota executable (see Sectids.1).

18.2.5 Removal of Corrupted Data

On occasion, a simulation or computer system failure may cause a corruption of the DAKOTA restart file.
For example, a simulation crash may result in failure of a post-processor to retrieve meaningful data. If
0's (or other erroneous data) are returned from the usadysis _driver , then this bad data will

get recorded in the restart file. If there is a clear demarcation of where corruption initiated (typical in a
process with feedback, such as gradient-based optimization), then usesibthe restart  option for
thedakota executable can be effective in continuing the study from the point immediately prior to the
introduction of bad data. If, however, there are interspersed corruptions throughout the restart database
(typical in a process without feedback, such as sampling), theretheve andremove _ids options of

dakota _restart _util can be useful.

An example of the command syntax for ttemove option is:
dakota_restart_util remove 2.e-04 dakota.rst dakota.rst.repaired
which results in a report similar to:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 2 removed, 63 saved.

where any evaluations idakota.rst having an active response function value that matéhe<4
within machine precision are discarded when creatiakpota.rst.repaired

An example of the command syntax for ttenove _ids option is:
dakota_restart_util remove_ids 12 15 23 44 57 dakota.rst dakota.rst.repaired
which results in a report similar to:

Writing new restart file dakota.rst.repaired
Restart repair completed: 65 evaluations retrieved, 5 removed, 60 saved.

where evaluation ids12, 15, 23, 44, and 57 have been discarded when creating
dakota.rst.repaired . An important detail of theremove _ids option is that evaluations
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are removed based on the evaluation id that is recorded as part of every restart record, not based on the or-
der of their appearance in the restart file (note: this is the opposite case from thatstbfhe_restart

option described in Sectiob8.1). This distinction is important when removing restart records for a run

that contained either asynchronous or duplicate evaluations, since the restart insertion order and evaluation
ids may not correspond in these cases (asynchronous evaluations have ids assigned in the order of job
initiation but are recorded in the restart file in the order of job completion, and duplicate evaluations are not
recorded which introduces offsets between evaluation id and record number). This can also be important
if removing records from a concatenated restart file, since the same evaluation id could appear more than
once. In this case, all evaluation records with ids matchingeheove _ids list will be removed.
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Chapter 19

Simulation Code Failure Capturing

DAKOTA provides the capability to manage failures in simulation codes within its system call, fork, and di-
rect application interfaces (see Chagddor application interface descriptions). Failure capturing consists
of three operations: failure detection, failure communication, and failure recovery.

19.1 Failure detection

Since the symptoms of a simulation failure are highly code and application dependent, it is the user’s
responsibility to detect failures within thedmalysis _driver  or output _filter . One popular
example of simulation monitoring is to rely on a simulation’s internal detection of errors. In this case, the
UNIX grep utility can be used within a user’s script to detect strings in output files which indicate analysis
failure. For example, the following C shell script excerpt

grep ERROR analysis.out > /dev/null
if ( $status == 0 )

echo "FAIL" > results.out
endif

will pass thaf testand communicate simulation failure to DAKOTA if theep command finds the string
ERRORanywhere in thenalysis.out file. The/dev/null device file is called the “bit bucket” and
thegrep command output is discarded by redirecting it to this destination.$Bketus  shell variable
contains the exit status of the last command execufgavhich is the exit status ajrep in this case (0 if
successful in finding the error string, nonzero otherwise). For Bourne shlisd$? shell variable serves
the same purpose &status for C shells. In a related approach, if the return code from a simulation
can be used directly for failure detection purposes, $&atus or $? could be queried immediately
following the simulation execution using &n test like that shown above.

If the simulation code is not returning error codes or providing direct error diagnostic information, then
failure detection may require monitoring of simulation results for sanity (e.g., is the mesh distorting exces-
sively?) or potentially monitoring for continued process existence to detect a simulation segmentation fault
or core dump. While this can get complicated, the flexibility of DAKOTA's interfaces allows for a wide
variety of monitoring approaches.
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19.2 Failure communication

Once a failure is detected, it must be communicated so that DAKOTA can attempt to recover from the
failure. The form of this communication depends on the type of application interface in use.

In the system call and fork application interfaces, a detected simulation failure is communicated to
DAKOTA through the results file. Instead of returning the standard results file data, the $aihg™
should appear at the beginning of the results file. Any data appearing after the fail string will be ignored.
Also, DAKOTA's detection of this string is case insensitive, §AIL ", “ Fail ", etc., are equally valid.

In the direct application interface case, a detected simulation failure is communicated to DAKOTA through
the return code provided by the useaisalysis _driver . The prototype for simulations linked within
the direct interface is

int analysis_driver(const DakotaVariables& vars,
const DakotalntArray& asv, DakotaResponse& response)

Theint returned is the failure code: O (false) if no failure occurs and 1 (true) if a failure occurs. Refer to
Sectionl6.2for additional information on the direct application interface.

19.3 Failure recovery

Once the analysis failure has been communicated, DAKOTA will attempt to recover from the failure using
one of the following four mechanisms, as governed by specifications from the interface keyword block in
the user’s input file (see the DAKOTA Reference Manua for additional information on this specifica-
tion).

19.3.1 Abort (default)

If the abort option is active (the default), then DAKOTA will terminate upon detecting a failure. Note
that if the problem causing the failure can be corrected, DAKOTA's restart capability (see Ch@ptan
be used to continue the study.

19.3.2 Retry

If the retry  option is specified, then DAKOTA will re-invoke the failed simulation up to the specified
number of retries. If the simulation continues to fail on each of these retries, DAKOTA will terminate.
The retry option is appropriate for those cases in which simulation failures may be resulting from transient
computing environment issues, such as shared disk space, software license access, or networking problems.

19.3.3 Recover

If the recover option is specified, then DAKOTA will not attempt the failed simulation again. Rather, it

will return a “dummy” set of function values as the results of the function evaluation. The dummy function
values to be returned are specified by the user. Any gradient or Hessian data requested in the active set
vector will be zero. This option is appropriate for those cases in which a failed simulation may indicate

a region of the design space to be avoided and the dummy values can be used to return a large objective
function or a constraint violation which will discourage an optimizer from further investigating the region.
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19.3.4 Continuation

If the continuation option is specified, then DAKOTA will attempt to step towards the failing “target”
simulation from a nearby “source” simulation through the use of a continuation algorithm. This option is
appropriate for those cases in which a failed simulation may be caused by an inadequate initial guess. If
the “distance” between the source and target can be divided into smaller steps in which information from
one step provides an adequate initial guess for the next step, then the continuation method can step towards
the target in increments sufficiently small to allow for convergence of the simulations.

When the failure occurs, the interval between the last successful evaluation (the source point) and the
current target point is halved and the evaluation is retried. This halving is repeated until a successful
evaluation occurs. The algorithm then marches towards the target point using the last interval as a step
size. If a failure occurs while marching forward, the interval will be halved again. Each invocation of the
continuation algorithm is allowed a total of ten failures (ten halvings result in up to 1024 evaluations from
source to target) prior to aborting the DAKOTA process.

While DAKOTA manages the interval halving and function evaluation invocations, the user is responsible
for managing the initial guess for the simulation program. For example, in a GOMA inputfiethe

user specifies the files to be used for reading initial guess data and writing solution data. When using
the last successful evaluation in the continuation algorithm, the translation of initial guess data can be
accomplished by simply copying the solution data file leftover from the last evaluation to the initial guess
file for the current evaluation (and in fact this is useful for all evaluations, not just continuation). However,
techniques are under development for use of the closest, previously successful, function evaluation (rather
than the last successful evaluation) as the source point in the continuation algorithm. This will be especially
important for nonlocal methods (e.g., genetic algorithms) in which the last successful evaluation may not
necessarily be in the vicinity of the current evaluation. This approach will require the user to save and
manipulate previous solutions (likely tagged with evaluation number) so that the results from a particular
simulation (specified by DAKOTA after internal identification of the closest point) can be used as the
current simulation’s initial guess.
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Chapter 20

Additional Examples

20.1 Textbook Example

The optimization problem formulation is stated as

minimize F= (x;i—1)* (20.1)
i=1
. 2 i)
subject to p=1- <0 (20.2)
g1 =15 — % <0
0.5<x; <58
—29<2,<29

wheren is the number of design variables. The objective function is designed to accommodate an arbitrary
number of design variables in order to allow flexible testing of a variety of data sets. Contour plots for the
n=2 case have been shown previously in Figii/@and Figure?.4.

This example problem may also be used to exercise least squares solution methods by modifying the prob-
lem formulation to:

minimize  (£)%+ (91)* + (g2)* (20.3)

This modification is performed by simply changing the responses specification for the three functions from
numobjective  _functions = 1 and numnonlinear _inequality  _constraints = 2 to
numleast _squares _terms = 3 . Note that the two problem formulations are not equivalent and
will have different solutions.

Another way to exercise the least squares methods which would be equivalent to the optimization for-
mulation would be to select the residual functions to(be— 1)2. However, this formulation requires
modification totext _book.C and will not be presented here. Equati@0.g), on the other hand, can use

the existingext _book.C without modification. Refer to Sectid®D.2for an example of minimizing the
same objective function using both optimization and least squares approaches.
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20.1.1 Methods

CONMIN, DOT, NPSOL, and OPT++ methods may be used to solve this optimization problem with or
without constraints. OPT++ Gauss-Newton and NLSSOL methods may be used to solve the least squares
problem.

The dakota _textbook.in file provided in theDakota/test directory selects aot _mmfd opti-
mizer to perform constrained minimization using tegt _book simulator.

A multilevel hybrid can also be demonstrated on thext _book problem. The
dakota _multilevel.in file provided in theDakota/test directory starts with aoliny _ea
solution which feeds its best point intocaliny _pattern _search optimization which feeds its best
point into optpp _newton . While this approach is overkill for such a simple problem, it is useful for
demonstrating the coordination between multiple methods in the multilevel strategy.

In addition,dakota _textbook _3pc.in demonstrates the use of a 3-piece interface to perform the pa-
rameter to response mapping atakota _textbook _lhs.in  demonstrates the use of latin hypercube
Monte Carlo sampling for assessing probability of failure as measured by specified response thresholds.

20.1.2 Optimization Results

The solution for the unconstrained optimization problem for two design variables is:

X1 = 1.0

Xo = 1.0
with

f*=0.0

The solution for the optimization problem constrainedsbpys:

X1 = 0.763

Xo = 1.16
with

f* = 0.00388

g:1* = 0.0 (active)

The solution for the optimization problem constrainedgpyandgs is:

X1 = 0.500
X2 = 0.500
with
f* = 0.125
g:1* = 0.0 (active)
g2" = 0.0 (active)
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Note that as constraints are added, the design freedom is restricted and a penalty in the objective function
is observed. Of course, no penalty would be observed if the additional constraints were not active at the
solution.

20.1.3 Least Squares Results

The solution for the least squares problem is:

0.566
0.566

X1
X2

with the residual functions equal to

f* = 0.0713
0:* = 0.0371
g.* = 0.0371

and a minimal sum of the squares@®60783 .

This study requires selection afimleast _squares _terms = 3 in the responses specification and
selection of eitheoptpp _g_newton ornissol _sqgp in the method specification.

20.2 Rosenbrock Example

The Rosenbrock functiorsf] is a well known benchmark problem for optimization algorithms. Its formu-
lation can be stated as

minimize  f = 100(z2 — %)% + (1 — x1)? (20.4)

Surface and contour plots for this function have been shown previously in Figuaad Figure2.2. This
example problem may also be used to exercise least squares solution methods by recasting the problem
formulation into:

minimize  f = (f1)? + (f2)? (20.5)
where
f1 = 10(zy — 2?) (20.6)
and
f2=1-—x1 (20.7)

are residual terms. In this case (unlike the least squares modification in S2@tipnthe two problem
formulations are equivalent and have identical solutions.
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20.2.1 Methods

In the /Dakota/test directory, therosenbrock executable (compiled fromosenbrock.C ) re-
turns an objective function as computed from Equatid®.4 for use with optimization methods. The
rosenbrock _Is executable (compiled frombsenbrock _Is.C ) returns two least squares terms as
computed from Equation20.6) and EquationZ0.7) for use with least squares methods. Both executa-
bles return analytic gradients of the function set (gradient of the objective functiowsénbrock
gradients of the least squares residualsosenbrock _Is ) with respect to the design variables. The
dakota _rosenbrock.in input file can be used to solve both problems by toggling settings in the in-
terface, responses, and method specifications. To run the optimization solution;reskdbrock’
astheanalysis _driver inthe interface specification, seleaim objective  _functions = 1  in

the responses specification, and select an optimizer ¢pipp _g_newton ) in the method specification,

e.g.:

interface, \
application system \
analysis_driver = 'rosenbrock’

variables, \
continuous_design = 2 \
cdv_initial_point  -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor 'x1’ X2’

responses, \
num_objective_functions = 1 \
analytic_gradients
no_hessians

method, \
optpp_g_newton \
convergence_tolerance = le-10

To run the least squares solution, selextenbrock  _Is’ astheanalysis _driver inthe interface
specification, selectum.least _squares _terms = 2 inthe responses specification, and select a least
squares iterator (i.eoptpp _g_newton ornlssol _sgp) in the method specification, e.g.:

interface, \
application system \
analysis_driver = ’'rosenbrock_|Is’

variables, \
continuous_design = 2 \
cdv_initial_point -1.2 1.0 \
cdv_lower_bounds -2.0 -2.0 \
cdv_upper_bounds 2.0 2.0 \
cdv_descriptor 'x1’ X2’

responses, \
num_least_squares_terms = 2 \
analytic_gradients \
no_hessians

method, \
optpp_g_nhewton, \
convergence_tolerance = le-10
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20.2.2 Results

The optimal solution, solved either as a least squares problem or an optimization problem, is:

X1 = 1.0

Xo = 1.0
with

f* =0.0

In comparing the two approaches, one would expect the Gauss-Newton approach to be more ef-
ficient since it exploits the special-structure of a least squares objective function. From a good
initial guess, this expected behavior is observed. Starting foow _initial _point = 0.8,

0.7 , the optpp _g_newton method converges in only 3 function and gradient evaluations while
the optpp _g-newton method requires 14 function and gradient evaluations to achieve similar accu-
racy. Starting from a poorer initial guess (e.cdy _initial _point = -1.2, 1.0 as specified in
Dakota/test/dakota _rosenbrock.in ), the trend is less obvious since both methods spend sev-
eral evaluations finding the vicinity of the minimum (total function and gradient evaluations = 24 for
optpp _q_newton and 29 foroptpp _g_newton ). However, once the vicinity is located, convergence is
much more rapid with the Gauss-Newton approach (11 orders of magnitude reduction in the objective func-
tion in 1 function and gradient evaluation) than with the quasi-Newton approach (12 orders of magnitude
reduction in the objective function in 10 function and gradient evaluations).

Shown below is the complete DAKOTA output for theptpp _g_newton method starting from
cdv _initial _point = 0.8, 0.7

Running MPI executable in serial mode.
Writing new restart file dakota.rst
Constructing Single Method Strategy...
methodName = optpp_g_newton
gradientType = analytic

hessianType = none

>>>>> Running Single Method Strategy.

>>>>> Running optpp_g_newton iterator.

Begin Function Evaluation 1

Parameters for function evaluation 1:
8.0000000000e-01 x1
7.0000000000e-01 x2

(rosenbrock_Is /tmp/fileYHVTVE /tmp/file6f8NR8)

Active response data for function evaluation 1:
Active set vector = { 3 3}
6.0000000000e-01 least_sqg_terml
2.0000000000e-01 least_sqg_term2
[ -1.6000000000e+01 1.0000000000e+01 ] least_sq_terml gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least _sqg_term2 gradient
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nlf2_evaluator_gn results: objective fn. =

4.0000000000e-01

nif2_evaluator_gn results: objective fn. gradient =

[ -1.9600000000e+01 1.2000000000e+01 ]

nlf2_evaluator_gn results: objective fn. Hessian
[[ 5.1400000000e+02 -3.2000000000e+02

-3.2000000000e+02 2.0000000000e+02 1]

Begin Function Evaluation 2

Parameters for function evaluation 2:
9.9999528206e-01 x1
9.5999243139e-01 x2

(rosenbrock_Is /tmp/fileaS7ICC /tmp/fileymcIm6)

Active response data for function evaluation 2:
Active set vector = { 3 3}
-3.9998132752e-01 least_sq_terml
4.7179400000e-06 least_sq_term2
[ -1.9999905641e+01 1.0000000000e+01 ] least_sqg_terml gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term2 gradient

nlf2_evaluator_gn results: objective fn. =

1.5998506239%¢e-01

nlf2_evaluator_gn results: objective fn. gradient
[ 1.5999168181e+01 -7.9996265504e+00 ]

nlf2_evaluator_gn results: objective fn. Hessian
[[ 8.0199245130e+02 -3.9999811282e+02
-3.9999811282e+02 2.0000000000e+02 1]

Begin Function Evaluation 3

Parameters for function evaluation 3:
9.9999904378e-01 x1
9.9999808275e-01 x2

(rosenbrock_Is /tmp/fileSAHGOB /tmp/fileK8IAE7)

Active response data for function evaluation 3:
Active set vector = { 3 3 }
-4.8109144216e-08 least_sq_terml
9.5621999996e-07 least_sq_term2
[ -1.9999980876e+01 1.0000000000e+01 ] least _sqg_terml gradient
[ -1.0000000000e+00 0.0000000000e+00 ] least_sq_term2 gradient

nlf2_evaluator_gn results: objective fn. =

9.1667117808e-13

nlf2_evaluator_gn results: objective fn. gradient
[ 1.1923928641e-08 -9.6218288432e-07 ]

nlf2_evaluator_gn results: objective fn. Hessian
[[ 8.0199847008e+02 -3.9999961752e+02
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-3.9999961752e+02 2.0000000000e+02 1]]

<<<<< lterator optpp_g_newton completed.
<<<<< Function evaluation summary: 3 total (3 new, O duplicate)
<<<<< Best parameters =
9.9999904378e-01 x1
9.9999808275e-01 x2
<<<<< Best residual terms =
-4.8109144216e-08
9.5621999996e-07
<<<<< Best data captured at function evaluation 3
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.01 [parent = 0.009765, child = 0.000235]
Total wall clock = 0.026

20.3 Cylinder Head Example

The cylinder head example problem arose as a simple demonstration problem for the Technologies En-
abling Agile Manufacturing (TEAM) project. Its formulation is stated as

L horsepower warranty
minimize =1 20.8
f ( 250 + 100000 ) ( )
subject to Omaz < 0.50y5c1d (20.9)

warranty > 100000
timecycie < 60

1.5 < djprare < 2.164
0.0 < flatness < 4.0

This formulation seeks to simultaneously maximize normalized engine horsepower and engine warranty
over variables of valve intake diameter; {;...) in inches and overall head flathe€d {tness) in thou-

sandths of an inch subject to inequality constraints that the maximum stress cannot exceed half of yield,
that warranty must be at least 100000 miles, and that manufacturing cycle time must be less than 60 sec-
onds. Since the constraints involve different scales, they should be nondimensionalized. In addition, they
can be converted to the standard 1-sided fo(®) < 0 as follows:

2 max
g= 1<
Oyield
warranty
=1-——<0 20.10
92 100000 — (20.10)
timecycle
g =—— % 1<
g3 60 S

The objective function and constraints are related analytically to the design variables according to the
following simple expressions:

warranty = 100000 + 15000(4 — flatness)
timecycre = 45+4.5(4— flatness)'®
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dintake
h = 250+ 200 —1 011
orsepower —+ < 1833 > ( )
750 + L
Onax - -
(twall)2'5
din e dex aus
tyas1 = Offsetintake — OffSetexnanst — (dinra haust )

2

where the constants in Equatid?0(10 and EquationZ0.11) assume the following valuesy;e14 = 3000,
offsetigtake = 3.25, 0ffs€tognaust = 1.34, aNddexnaust = 1.556.

20.3.1 Methods

In the Dakota/test directory, thedakota _cyl _head.in input file is used to execute the cylinder
head example. This input file manages a variety of tests, of which one is shown below:

interface, \
application fork, \
asynchronous \
analysis_driver= ‘cyl_head’

variables, \
continuous_design = 2 \
cdv_initial_point 1.8 1.0 \
cdv_upper_bounds 2.164 4.0
cdv_lower_bounds 15 0.0 \

cdv_descriptor ‘intake_dia’ ‘flatness’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 3 \
numerical_gradients \
method_source dakota \
interval_type central \
fd_step_size = l.e-4 \
no_hessians

method, \
npsol_sgp \
convergence_tolerance = 1.e-8 \
output verbose

The interface keyword specifies use of theyl _.head executable (compiled from
/Dakotaltest/cyl _head.C ) as the simulator. The variables and responses keywords specify
the data sets to be used in the iteration by providing the initial point, descriptors, and upper and lower
bounds for two continuous design variables and by specifying the use of one objective function, three
inequality constraints, and numerical gradients in the problem. The method keyword specifies the use of
thenpsol _sqgp method to solve this constrained optimization problem. No strategy keyword is specified,
so the defaulsingle _method strategy is used.

20.3.2 Optimization Results

The solution for the constrained optimization problem is:

intake_dia
flatness

2.122
1.769
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with
f* = -2.461
g7 = 0.0 (active)
gs = -0.3347 (inactive)
g3 = 0.0 (active)

which corresponds to the following optimal response quantities:

warranty = 133472
cycle_time = 60
horse_power = 281.579
max_stress = 1500

The final report from the DAKOTA output is as follows:

<<<<< lterator npsol_sgp completed.
<<<<< Function evaluation summary: 65 total (65 new, O duplicate)
<<<<< Best parameters =
2.1224188321e+00 intake_dia
1.7685568330e+00 flatness
<<<<< Best objective function =
-2.4610312954e+00
<<<<< Best constraint values =
-5.3569116666e-10
-3.3471647505e-01
9.9882176098e-12
<<<<< Best data captured at function evaluation 61
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.06 [parent = 0.068359, child = -0.008359]
Total wall clock = 0.212

20.4 Container Example

For this example, suppose that a high-volume manufacturer of light weight steel containers wants to min-
imize the amount of raw sheet material that must be used to manufacture a 1.1 quart cylindrical-shaped
can, including waste material. Material for the container walls and end caps is stamped from stock sheet
material of constant thickness. The seal between the end caps and container wall is manufactured by a
press forming operation on the end caps. The end caps can then be attached to the container wall forming
a seal through a crimping operation.

For preliminary design purposes, the extra material that would normally go into the container end cap seals

is approximated by increasing the cut dimensions of the end cap diameters by 12% and the height of the

container wall by 5%, and waste associated with stamping the end caps in a specialized pattern from sheet
stock is estimated as 15% of the cap area. The equation for the area of the container materials including
waste is

end cap end cap . container .
nominal nominal
waste seal wall seal .
A=2x . X . X end cap + . X container
material material material
area wall area
factor factor factor

or
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end cap

wall
Figure 20.1: Container wall-to-end-cap seal

A= 2(1.15)(1.12)71'%2 + (1.05)TDH (20.12)

whereD and H are the diameter and height of the finished product in units of inches, respectively. The
volume of the finished product is given by

2
V:WDH

= (1.1qt)(57.75in% /qt) (20.13)

The equation for area is the objective function for this problem; it is to be minimized. The equation for
volume is an equality constraint; it must be satisfied at the conclusion of the optimization problem. Any
combination ofD andH that satisfies the volume constraint ifeasiblesolution (although not necessarily

the optimal solution) to the area minimization problem, and any combination that does not satisfy the
volume constraint is aimfeasible solution. The area that is a minimum subject to the volume constraint
is theoptimal area, and the corresponding values for the paramé&teasd H are the optimal parameter
values.

It is important that the equations supplied to a numerical optimization code be limited to generating only
physically realizable values, since an optimizer will not have the capability to differentiate between mean-
ingful and nonphysical parameter values. It is often up to the engineer to supply these limits, usually
in the form of parameter bound constraints. For example, by observing the equations for the area ob-
jective function and the volume constraint, it can be seen that by allowing the diarfetary,become
negative, it is algebraically possible to generate relatively small values for the area that also satisfy the
volume constraint. Negative values fbrare of course physically meaningless. Therefore, to ensure that
the numerically-solved optimization problem remains meaningful, a bound constraint<of) must be
included in the optimization problem statement. A positive valueHas implied since the volume con-
straint could never be satisfiedif were negative. However, a bound constrainHoK 0 can be added to

the optimization problem if desired. The optimization problem can then be stated in a standardized form as

. D?
minimize: 2(1.15)(1.12)7rT + (1.05)27rDH
’H
subject to: 7r = (1.1qt)(57.75in%/qt) (20.14)
D<0,H<0

A graphical view of the container optimization problem appears in Figdt8 The 3-D surface defines

the areaA, as a function of diameter and height. The curved line that extends across the surface defines
the areas that satisfy the volume equality constraintGraphically, the container optimization problem

can be viewed as one of finding the point along the constraint line with the smallest 3-D surface height in
Figure20.2 This point corresponds to the optimal values for diameter and height of the final product.

Generated on Mon Mar 17 13:12:53 2003 for DAKOTA by Doxygen written by Dimitri van Heesch(© 1997-2002



219
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Figure 20.2: A graphical representation of the container optimization problem.
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~ }‘,
 —— L=100" ———
Y, X
/ t
Z
Figure 20.3: Cantilever beam test problem.
The input file for this test problem is namddkota _container.in in the directoryDakota/test

The solution to this example problem(i#l, D) = (4.99, 4.03), with a minimum area of 98.48n? .
The final report from the DAKOTA output is as follows:

<<<<< lterator npsol_sgp completed.
<<<<< Function evaluation summary: 40 total (40 new, O duplicate)
<<<<< Best parameters =
4.9873894231e+00 H
4.0270846274e+00 D
<<<<< Best objective function =
9.8432498115e+01
<<<<< Best constraint values =
-1.2072307876e-09
<<<<< Best data captured at function evaluation 36
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.05 [parent = 0.05, child =6.93889¢e-18]
Total wall clock = 0.311

20.5 Cantilever Example

This test problem is adapted from the reliability-based design optimization liter&tiJy¢ {0] and involves
a simple uniform cantilever beam as shown in FigR0e3

The design problem is to minimize the weight (or, equivalently, the cross-sectional area) of the beam
subject to a displacement constraint and a stress constraint. Random variables in the problem include the
yield stressk of the beam material, the Young's modultioof the material, and the horizontal and vertical
loads,X andY’, which are modeled with normal distributions usiNg40000, 2000), N (2.9E7,1.45E6),

N (500, 100), andN (1000, 100), respectively. Problem constants inclutle= 100in andDy = 2.2535in.

The constraints have the following analytic form:

600 600

stress = WY —+ @X S R (2015)
displ t ALY Y i + X i < D,
1 men = —_— - R
splaceme Twt 7 w2 < Dy
or when scaled:
stress
gs = T 1<0 (20.16)
P displacement _1<0
Dy

(20.17)
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20.5.1 Deterministic Optimization Results

If the random variable&, R, X, andY are fixed at their means, the resulting deterministic design problem
can be formulated as

minimize f=wt (20.18)
subject to gs <0 (20.19)
gp <0
1.0 <w<4.0
1.0<t<4.0
and can be solved using takota/test/dakota _cantilever.in file. This input file manages a

variety of tests, of which one follows:

method, \
npsol_sgp \
convergence_tolerance = 1.e-8 \
output verbose

variables, \
continuous_design = 2 \
cdv_initial_point 4.0 4.0 \
cdv_upper_bounds 10.0 10.0
cdv_lower_bounds 1.0 1.0 \
cdv_descriptor 'beam_width’ ’beam_thickness’ \
continuous_state = 4 \
csv_initial_state  40000. 29.E+6 500. 1000. \
csv_descriptor 'R’ 'E’ X Y’
interface, \
application system, \
asynchronous evaluation_concurrency = 2 \

analysis_driver = 'cantilever’

responses, \
num_objective_functions = 1 \
num_nonlinear_inequality_constraints = 2 \
numerical_gradients \
method_source dakota \
interval_type forward \
fd_step_size = l.e-4 \
no_hessians

The deterministic solution igw, t) = (2.35, 3.33) with an objective function of 7.82. The final report from
the DAKOTA output is as follows:

<<<<< lterator npsol_sgp completed.
<<<<< Function evaluation summary: 33 total (33 new, 0 duplicate)
<<<<< Best parameters =
2.3520341345e+00 beam_width
3.3262783972e+00 beam_thickness
4.0000000000e+04 R
2.9000000000e+07 E
5.0000000000e+02 X
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1.0000000000e+03 Y
<<<<< Best objective function =
7.8235203311e+00
<<<<< Best constraint values =
-1.6008999688e-02
1.9308333361e-11
<<<<< Best data captured at function evaluation 31
<<<<< Single Method Strategy completed.
DAKOTA execution time in seconds:
Total CPU = 0.04 [parent = 0.050781, child = -0.010781]
Total wall clock = 0.299

20.5.2 Stochastic Optimization Results

If the normal distributions for the random variablgs R, X, andY are included, a stochastic design
problem can be formulated as

minimize f=wt (20.20)
subject to uwp +30p <0 (20.21)
is +30s <0
1.0<w<4.0
1.0<t<4.0

where a 3-sigma reliability level (probability of failure = 0.00135 if responses are normally-distributed) is
being sought on the scaled constraints. Optimization under uncertainty solutions to the stochastic problem
are described in1[9].

20.6 Multiobjective Examples

There are three examples in the test directory that are taken from a multiobjective evolutionary algorithm
(MOEA) test suite described by Van Veldhuizen et. al. ia][ These three problems are good examples

to illustrate different forms the Pareto set may take. For each problem, we list the DAKOTA input file,
and show a graph of the Pareto front. These problems are all solved withaga method. In Van
Veldhuizen’s notation, the set of all Pareto optimal design configurations (design variable values only) is
denotedP* or P4 and is defined as:

P i={zecQ|-32€Q f(z)=<f(x)}

The Pareto front, which is the set of objective function values associated with the Pareto optimal design
configurations, is denoterf™* or PF..,. and is defined as:

PF*:={u=f=(fi(z),..., fi(z)) |z € P}

The values calculated for the Pareto set and the Pareto front using the moga method are close to but not
always exactly the true values, depending on the number of generations the moga is run, the various settings
governing the GA, and the complexity of the Pareto set.
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20.6.1 Multiobjective Test Problem 1

The first test problem is a case whelg.,.. is connected and’F;,.,,. is concave. The problem is to
simultaneously optimizg, andf, given three input variables; , =2, andzs, where the inputs are bounded

by —4 < gx; <4
3 1 2
z)=1—e — Ti— —=
Ji@) Xp( _< ﬁ))
3 1 2
z)=1-e — T+ —
f2(2) xp( ;( \/5) )
The input file for this example is the filédDakota/test/dakota _mogatestl.in , see Fig-
ure 20.4 The interface keyword specifies the use of thegatestl executable (compiled from
Dakota/test/mogatest1.C ) as the simulator. The Pareto front is shown in FigR@ea

20.6.2 Multiobjective Test Problem 2

The second test problem is a case where Beth, andPF.., is disconnectedPF;,,. has four separate
Pareto curves. The problem is to simultaneously optinfizend f> given two input variablesy; andz,,
where the inputs are bounded by z; < 1, and:

fi(z) =21

(o Z1
1+ 1029 1+ 10z4

sin(8mx1)

fg(,I) = (1 + 10172) X [1 — (

The input file for this example is the filéDakota/test/dakota _mogatest2.in , see Fig-
ure 20.6 The interface keyword specifies the use of thegatest2 executable (compiled from
Dakota/test/mogatest2.C ) as the simulator. The Pareto front is shown in Fig2oer. Note the

discontinous nature of the Pareto front in this example.

20.6.3 Multiobjective Test Problem 3

The third test problem is a case whétg,. is disconnected bWRF..,. iS connected. It is called the
Srinivas problem in the literature (cite). This problem also has two nonlinear constraints. The problem is
to simultaneously optimiz¢; and f, given two input variablesy; andxs, where the inputs are bounded

by —20 < x; < 20, and:

fl(l‘) = ({)31 — 2)2 + (LL'Q — 1)2 +2

fg(l') = 91’1 — (LEQ — 1)2
The constraints are:

0 <af+ax5—225
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strategy, \
single_method \

method, \
moga
output silent \
seed = 10983 \
max_function_evaluations = 2500 \
initialization_type \
unique_random \
crossover_type \
multi_point_parameterized_binary = 3 \
crossover_rate = 0.8 \
mutation_type \
replace_uniform \
mutation_rate = 0.1 \
fitness_type \
domination_count \
replacement_type \
below_limit = 6 \
shrinkage_percentage = 0.9 \
convergence_type \
metric_tracker \
percent_change = 0.05 \
num_generations = 10

variables, \
continuous_design = 3 \
cdv_initial_point 0 0 0 \
cdv_upper_bounds 4 4 4 \
cdv_lower_bounds -4 -4 -4 \
cdv_descriptor 'x1’ 'x2' 'x3'

interface, \
system \
analysis_driver = 'mogatestl’

responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 20.4: A DAKOTA input file that specifies the use of a multiple objective genetic algorithm (MOGA)
on mogatestl
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IMOGA Test Problem #1 - Concave Fareto Frontier

o1 i i i i ; i i i i

Figure 20.5: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest1

0<x; —3z2+10

The input file for this example is the filéDakota/test/dakota _mogatest3.in , see Fig-

ure 20.8 The interface keyword specifies the use of thmgatest3 executable (compiled
fromDakota/test/mogatest3.C ) as the simulator. The Pareto set is shown in FiR€ Note

the discontinous nature of the Pareto set (in the design space) in this example. The Pareto front is shown

in Figure20.1Q Again, note the unusual nature of this Pareto example (these figures agree reasonably well
with the Srinivas problem results shown in the literature).
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strategy, \
single \

method, \
moga
output silent \
seed = 10983 \
max_function_evaluations = 3000 \
initialization_type \
unique_random \
crossover_type \
multi_point_parameterized_binary = 3 \
crossover_rate = 0.8 \
mutation_type \
replace_uniform \
mutation_rate = 0.1 \
fitness_type \
domination_count \
replacement_type \
below_limit = 6 \
shrinkage_percentage = 0.9 \
convergence_type \
metric_tracker \
percent_change = 0.05 \
num_generations = 10 \

variables, \
continuous_design = 2 \
cdv_initial_point 0.5 0.5 \
cdv_upper_bounds 1 1 \
cdv_lower_bounds 0 0 \
cdv_descriptor 'x1’ 'x2'

interface, \
system \
analysis_driver = ’'mogatest2’

responses, \
num_objective_functions = 2 \
no_gradients \
no_hessians

Figure 20.6: A DAKOTA input file that specifies the use of a multiple objective genetic algorithm (MOGA)
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MOGA Test Problem #2 - Discrete Fareto Frontier

Figure 20.7: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatestl
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strategy, \
single \

method, \
moga
output silent \
seed = 10983 \
max_function_evaluations = 2000 \
initialization_type \
unique_random \
crossover_type \
multi_point_parameterized_binary = 3 \
crossover_rate = 0.8 \
mutation_type \
replace_uniform \
mutation_rate = 0.1 \
fitness_type \
domination_count \
replacement_type \
below_limit = 6 \
shrinkage_percentage = 0.9 \
convergence_type \
metric_tracker \
percent_change = 0.05 \
num_generations = 10

variables, \
continuous_design = 2 \
cdv_initial_point 0 0 \
cdv_upper_bounds 20 20 \
cdv_lower_bounds -20 -20 \
cdv_descriptor 'x1’ 'x2'

interface, \
system \
analysis_driver = 'mogatest3’

responses, \
num_objective_functions = 2 \
num_nonlinear_inequality_constraints = 2 \
nonlinear_inequality_upper_bounds = 0.0 0.0 \
no_gradients \

no_hessians

Figure 20.8: A DAKOTA input file that specifies the use of a multiple objective genetic algorithm (MOGA)
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MOGA Test Proklem #3 - Pareto Set

®1

Figure 20.9: Pareto Set of Design Variables corresponding to the Pareto front for mogatest3

MOGA Test Problem #3 - ~Linear Fareto Frontier
=i} T T T T

o -100

-140

-200

. i I i i
0 a0 100 150 200 250
F1

Figure 20.10: Pareto Front showing Tradeoffs between Function F1 and Function F2 for mogatest3
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